Ontologies for increasing the FAIRness of plant research data

被引:1
作者
Dumschott, Kathryn [1 ,2 ]
Doerpholz, Hannah [1 ,2 ]
Laporte, Marie-Angelique [3 ]
Brilhaus, Dominik [4 ]
Schrader, Andrea [5 ]
Usadel, Bjorn [1 ,2 ,6 ]
Neumann, Steffen [7 ,8 ]
Arnaud, Elizabeth [3 ]
Kranz, Angela [1 ,2 ]
机构
[1] Forschungszentrum Julich, Inst Bio & Geosci IBG Bioinformat 4, Julich, Germany
[2] Forschungszentrum Julich, Bioecon Sci Ctr BioSC, CEPLAS, Julich, Germany
[3] Digital Solut Team, Digital Inclus Lever, Biovers Int, Montpellier Off, Montpellier, France
[4] Heinrich Heine Univ Dusseldorf, Data Sci & Management & Cluster Excellence Plant, Dusseldorf, Germany
[5] Univ Cologne, Data Sci & Management & Cluster Excellence Plant, Cologne, Germany
[6] Heinrich Heine Univ Dusseldorf, Inst Biol Data Sci & Cluster Excellence Plant Sci, Fac Math & Life Sci, Dusseldorf, Germany
[7] Leibniz Inst Plant Biochem, Program Ctr MetaCom, Halle, Germany
[8] German Ctr Integrat Biodivers Res iDiv, Leipzig, Germany
来源
FRONTIERS IN PLANT SCIENCE | 2023年 / 14卷
关键词
data management; metadata; FAIR; ontologies; OBO foundry; DataPLANT; ISA; TOOL; ARCHIVE;
D O I
10.3389/fpls.2023.1279694
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The importance of improving the FAIRness (findability, accessibility, interoperability, reusability) of research data is undeniable, especially in the face of large, complex datasets currently being produced by omics technologies. Facilitating the integration of a dataset with other types of data increases the likelihood of reuse, and the potential of answering novel research questions. Ontologies are a useful tool for semantically tagging datasets as adding relevant metadata increases the understanding of how data was produced and increases its interoperability. Ontologies provide concepts for a particular domain as well as the relationships between concepts. By tagging data with ontology terms, data becomes both human- and machine- interpretable, allowing for increased reuse and interoperability. However, the task of identifying ontologies relevant to a particular research domain or technology is challenging, especially within the diverse realm of fundamental plant research. In this review, we outline the ontologies most relevant to the fundamental plant sciences and how they can be used to annotate data related to plant-specific experiments within metadata frameworks, such as Investigation-Study-Assay (ISA). We also outline repositories and platforms most useful for identifying applicable ontologies or finding ontology terms.
引用
收藏
页数:15
相关论文
共 93 条
[1]  
Abdelmageed N., 2021, S4BIODIV 2021
[2]   Evolving BioAssay Ontology (BAO): modularization, integration and applications [J].
Abeyruwan, Saminda ;
Vempati, Uma D. ;
Kuecuek-McGinty, Hande ;
Visser, Ubbo ;
Koleti, Amar ;
Mir, Ahsan ;
Sakurai, Kunie ;
Chung, Caty ;
Bittker, Joshua A. ;
Clemons, Paul A. ;
Brudz, Steve ;
Siripala, Anosha ;
Morales, Arturo J. ;
Romacker, Martin ;
Twomey, David ;
Bureeva, Svetlana ;
Lemmon, Vance ;
Schuerer, Stephan C. .
JOURNAL OF BIOMEDICAL SEMANTICS, 2014, 5
[3]  
Albuquerque A., 2011, Desenvolvimento de uma ontologia de dominio para modelagem de biodiversidade
[4]   The Gene Ontology knowledgebase in 2023 [J].
Aleksander, Suzi A. ;
Balhoff, James ;
Carbon, Seth ;
Cherry, J. Michael ;
Drabkin, Harold J. ;
Ebert, Dustin ;
Feuermann, Marc ;
Gaudet, Pascale ;
Harris, Nomi L. ;
Hill, David P. ;
Lee, Raymond ;
Mi, Huaiyu ;
Moxon, Sierra ;
Mungall, Christopher J. ;
Muruganugan, Anushya ;
Mushayahama, Tremayne ;
Sternberg, Paul W. ;
Thomas, Paul D. ;
Van Auken, Kimberly ;
Ramsey, Jolene ;
Siegele, Deborah A. ;
Chisholm, Rex L. ;
Fey, Petra ;
Aspromonte, Maria Cristina ;
Nugnes, Maria Victoria ;
Quaglia, Federica ;
Tosatto, Silvio ;
Giglio, Michelle ;
Nadendla, Suvarna ;
Antonazzo, Giulia ;
Attrill, Helen ;
dos Santos, Gil ;
Marygold, Steven ;
Strelets, Victor ;
Tabone, Christopher J. ;
Thurmond, Jim ;
Zhou, Pinglei ;
Ahmed, Saadullah H. ;
Asanitthong, Praoparn ;
Luna Buitrago, Diana ;
Erdol, Meltem N. ;
Gage, Matthew C. ;
Ali Kadhum, Mohamed ;
Li, Kan Yan Chloe ;
Long, Miao ;
Michalak, Aleksandra ;
Pesala, Angeline ;
Pritazahra, Armalya ;
Saverimuttu, Shirin C. C. ;
Su, Renzhi .
GENETICS, 2023, 224 (01)
[5]  
Antoniou G, 2003, IN HAND I S, P67
[6]   From data to knowledge - big data needs stewardship, a plant phenomics perspective [J].
Arend, Daniel ;
Psaroudakis, Dennis ;
Memon, Junaid Altaf ;
Rey-Mazon, Elena ;
Schueler, Danuta ;
Szymanski, Jedrzej Jakub ;
Scholz, Uwe ;
Junker, Astrid ;
Lange, Matthias .
PLANT JOURNAL, 2022, 111 (02) :335-347
[7]   PGP repository: a plant phenomics and genomics data publication infrastructure [J].
Arend, Daniel ;
Junker, Astrid ;
Scholz, Uwe ;
Schueler, Danuta ;
Wylie, Juliane ;
Lange, Matthias .
DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION, 2016,
[8]  
Arnaud E., 2016, 24 PLANT AN GEN C, P9
[9]  
Arnaud E., 2022, Crop ontology governance and stewardship framework, P14
[10]  
Arnaud E., 2012, owards a reference plant trait ontology for modeling knowledge of plant traits and phenotypes, DOI [10.13140/2.1.2550.3525, DOI 10.13140/2.1.2550.3525]