Predicting Insulin Resistance in a Pediatric Population With Obesity

被引:1
|
作者
Araujo, Daniela [1 ,2 ,3 ,11 ]
Morgado, Carla [4 ,5 ,6 ]
Correia-Pinto, Jorge [2 ,3 ,7 ,10 ]
Antunes, Henedina [2 ,3 ,8 ,9 ,10 ]
机构
[1] Hosp Braga, Pediat Dept, Braga, Portugal
[2] Univ Minho, Life & Hlth Sci Res Inst ICVS, Braga, Portugal
[3] Univ Minho, Sch Med, Braga, Portugal
[4] Hosp Braga, Dept Neurol, Braga, Portugal
[5] CEREBRO Brain Hlth Ctr, Braga, Portugal
[6] Higher Inst Hlth, ISAVE, Braga, Portugal
[7] Hosp Braga, Dept Pediat Surg, Braga, Portugal
[8] Hosp Braga, Pediat Dept, Gastroenterol Hepatol & Nutr Unit, Braga, Portugal
[9] Hosp Braga, Acad Clin Ctr 2CA Braga, Braga, Portugal
[10] Univ Minho, ICVS Associate Lab 3Bs, Braga, Portugal
[11] Univ Minho, Sch Med, Campus Gualtar, P-4710057 Braga, Portugal
关键词
insulin resistance; pediatric obesity; predictive medical algorithm; HOMEOSTASIS MODEL ASSESSMENT; METABOLIC SYNDROME; ACANTHOSIS NIGRICANS; CARDIOVASCULAR RISK; GLUCOSE-TOLERANCE; FAMILY-HISTORY; CHILDREN; SENSITIVITY; OVERWEIGHT; ADOLESCENTS;
D O I
10.1097/MPG.0000000000003910
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
Objectives:Insulin resistance (IR) affects children and adolescents with obesity and early diagnosis is crucial to prevent long-term consequences. Our aim was to identify predictors of IR and develop a multivariate model to accurately predict IR.Methods:We conducted a cross-sectional analysis of demographical, clinical, and biochemical data from a cohort of patients attending a specialized Paediatric Nutrition Unit in Portugal over a 20-year period. We developed multivariate regression models to predict IR. The participants were randomly divided into 2 groups: a model group for developing the predictive models and a validation group for cross-validation of the study.Results:Our study included 1423 participants, aged 3-17 years old, randomly divided in the model (n = 879) and validation groups (n = 544). The predictive models, including uniquely demographic and clinical variables, demonstrated good discriminative ability [area under the curve (AUC): 0.834-0.868; sensitivity: 77.0%-83.7%; specificity: 77.0%-78.7%] and high negative predictive values (88.9%-91.6%). While the diagnostic ability of adding fasting glucose or triglycerides/high density lipoprotein cholesterol index to the models based on clinical parameters did not show significant improvement, fasting insulin appeared to enhance the discriminative power of the model (AUC: 0.996). During the validation, the model considering demographic and clinical variables along with insulin showed excellent IR discrimination (AUC: 0.978) and maintained high negative predictive values (90%-96.3%) for all models.Conclusion:Models based on demographic and clinical variables can be advantageously used to identify children and adolescents at moderate/high risk of IR, who would benefit from fasting insulin evaluation.
引用
收藏
页码:779 / 787
页数:9
相关论文
共 50 条
  • [1] Insulin resistance and the metabolic syndrome are related to the severity of steatosis in the pediatric population with obesity
    Ubina-Aznar, Esther
    Tapia-Ceballos, Leopoldo
    Miguel Rosales-Zabal, Jose
    Porcel-Chacon, Rocio
    Poveda-Gomez, Francisco
    Lozano-Calero, Carmen
    Ortiz-Cuevas, Carmen
    Rivas-Ruiz, Francisco
    Sanchez-Cantos, Andres
    Maria Navarro-Jarabo, Jose
    REVISTA ESPANOLA DE ENFERMEDADES DIGESTIVAS, 2017, 109 (11) : 772 - 777
  • [2] Diabetes and Insulin Resistance in Pediatric Obesity
    Kim, Grace
    Caprio, Sonia
    PEDIATRIC CLINICS OF NORTH AMERICA, 2011, 58 (06) : 1355 - +
  • [3] A better parameter in predicting insulin resistance: Obesity plus elevated alanine aminotransferase
    Chen, Ping-Hao
    Chen, Jong-Dar
    Lin, Yu-Cheng
    WORLD JOURNAL OF GASTROENTEROLOGY, 2009, 15 (44) : 5598 - 5603
  • [4] The relationship between serum phosphate levels with childhood obesity and insulin resistance
    Celik, Nurullah
    Andiran, Nesibe
    JOURNAL OF PEDIATRIC ENDOCRINOLOGY & METABOLISM, 2011, 24 (1-2) : 81 - 83
  • [5] Unsaturated fatty acids and insulin resistance in childhood obesity
    Toledo, Karen
    Aranda, Mario
    Asenjo, Sylvia
    Saez, Katia
    Bustos, Paulina
    JOURNAL OF PEDIATRIC ENDOCRINOLOGY & METABOLISM, 2014, 27 (5-6) : 503 - 510
  • [6] Insulin resistance, serum uric acid and metabolic syndrome are linked to cardiovascular dysfunction in pediatric obesity
    Genoni, Giulia
    Menegon, Veronica
    Secco, Gioel Gabrio
    Sonzini, Michela
    Martelli, Massimiliano
    Castagno, Matteo
    Ricotti, Roberta
    Monzani, Alice
    Aronici, Michele
    Grossini, Elena
    Di Mario, Carlo
    Bona, Gianni
    Bellone, Simonetta
    Prodam, Flavia
    INTERNATIONAL JOURNAL OF CARDIOLOGY, 2017, 249 : 366 - 371
  • [7] Circulating miRNA Signatures Associated with Insulin Resistance in Adolescents with Obesity
    Lin, Haixia
    Tas, Emir
    Borsheim, Elisabet
    Mercer, Kelly E.
    DIABETES METABOLIC SYNDROME AND OBESITY-TARGETS AND THERAPY, 2020, 13 : 4929 - 4939
  • [8] Obesity is associated with insulin resistance and components of the metabolic syndrome in Lebanese adolescents
    Nasreddine, Lara
    Naja, Farah
    Tabet, Maya
    Habbal, Mohammad-Zuheir
    El-Aily, Aida
    Haikal, Chrystel
    Sidani, Samira
    Adra, Nada
    Hwalla, Nahla
    ANNALS OF HUMAN BIOLOGY, 2012, 39 (02) : 122 - 128
  • [9] Composition and Functions of the Gut Microbiome in Pediatric Obesity: Relationships with Markers of Insulin Resistance
    Orsso, Camila E.
    Peng, Ye
    Deehan, Edward C.
    Tan, Qiming
    Field, Catherine J.
    Madsen, Karen L.
    Walter, Jens
    Prado, Carla M.
    Tun, Hein M.
    Haqq, Andrea M.
    MICROORGANISMS, 2021, 9 (07)
  • [10] Fatty liver disease, insulin resistance and adiponectin in an obese pediatric population
    Lopez-Capape, M.
    Lopez-Bermejo, A.
    Alonso Blanco, M.
    Lara Orejas, E.
    Corbaton Blasco, J.
    Barrio Castellanos, R.
    ANALES DE PEDIATRIA, 2009, 71 (06): : 495 - 501