Hysteretic model and seismic performance of a self-centering brace equipped with energy absorbing steel plate clusters

被引:5
|
作者
Liu, Jiawang [1 ]
Qiu, Canxing [1 ]
Zhang, Yichen [2 ]
Liu, Hang [3 ]
Du, Xiuli [1 ]
机构
[1] Beijing Univ Technol, Minist Educ, Key Lab Urban Secur & Disaster Engn, Beijing 100124, Peoples R China
[2] Univ Bristol, Dept Civil Engn, Bristol BS8 1TR, England
[3] Beijing Bldg Construct Res Inst Co Ltd, Beijing 100039, Peoples R China
基金
中国国家自然科学基金;
关键词
Self-centering brace; Hysteretic model; Energy dissipation; Seismic performance; Residual inter-story drift; SHAPE-MEMORY ALLOY; BEHAVIOR; DESIGN; FRAMES; CONNECTIONS; TESTS; VALIDATION; BUILDINGS; RESPONSES;
D O I
10.1016/j.istruc.2023.105153
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The use of self-centering (SC) devices has been recognized as a promising strategy to improve the seismic resilience of structures, owing to their capacities for SC and energy dissipation (ED). This paper presents a comprehensive study on a SC brace (SCB) equipped with energy absorbing steel plate (EASP) clusters. Firstly, the configuration and deformation mode of the SCB were described. Then, a hysteretic model of the SCB was proposed based on the Bouc-Wen model, and the behavior of the SCB was described in detail. The accuracy of the hysteretic model was subsequently verified by experimental results. On the basis of this, the theoretical analysis was carried out to evaluate the effect of the design parameters on the hysteresis performance of the SCB. The results show that the ratio between the activation force of the SC system and the yield force of the ED system (rho) has a significant impact on the hysteresis performance of the SCB. As the value of rho increases, the SC capability of the SCB increases, but the ED capacity decreases. Finally, the seismic performance of the steel frame which adopts the SCB was evaluated using nonlinear response history analysis. The results indicate that the SCB with a rho value of 1.0 can achieve a comparable structural deformation response with a buckling restrained braced (BRB) frame, and the residual drift of the SCB frame is less than 0.2% under ground motions of varying hazard levels.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Seismic performance of steel frame with a self-centering beam
    Shen, Pei-Wen
    Yang, Pu
    Hong, Ji-Hao
    Yang, Yi-Ming
    Tuo, Xiao-Yi
    JOURNAL OF CONSTRUCTIONAL STEEL RESEARCH, 2020, 175
  • [32] Design, manufacturing, and testing of a hybrid self-centering brace for seismic resilience of buildings
    Shi, Fei
    Lin, Zicheng
    Li, Qihao
    Ozbulut, Osman E.
    He, Zhiming
    Zhou, Yun
    EARTHQUAKE ENGINEERING & STRUCTURAL DYNAMICS, 2023, 52 (05) : 1381 - 1402
  • [33] Seismic Response of Resilient Steel Frame with Self-Centering SMA Brace
    Hu, Shujun
    Chang, Liqing
    Zhang, Bo
    Zeng, Sizhi
    Tang, Fenghua
    Zhi, Qing
    INTERNATIONAL JOURNAL OF STEEL STRUCTURES, 2023, 23 (06) : 1587 - 1601
  • [34] Development and validation tests of an assembly self-centering energy dissipation brace
    Xu, Longhe
    Yao, Shiqian
    Sun, Yusheng
    SOIL DYNAMICS AND EARTHQUAKE ENGINEERING, 2019, 116 : 120 - 129
  • [35] Self-centering steel plate shear walls for improving seismic resilience
    Clayton, Patricia M.
    Dowden, Daniel M.
    Li, Chao-Hsien
    Berman, Jeffrey W.
    Bruneau, Michel
    Lowes, Laura N.
    Tsai, Keh-Chuan
    FRONTIERS OF STRUCTURAL AND CIVIL ENGINEERING, 2016, 10 (03) : 283 - 290
  • [36] Seismic demand assessment of self-centering steel plate shear walls
    Jalali, S. A.
    Darvishan, E.
    JOURNAL OF CONSTRUCTIONAL STEEL RESEARCH, 2019, 162
  • [37] Experimental study on component performance in steel plate shear wall with self-centering braces
    Liu, Jia-Lin
    Xu, Long-He
    Li, Zhong-Xian
    STEEL AND COMPOSITE STRUCTURES, 2020, 37 (03) : 341 - 351
  • [38] Seismic performance of self-centering steel column base with buckling-restrained bars
    Shen, Peiwen
    Yang, Pu
    Chen, Yue
    Yang, Yiming
    Zhou, Jianting
    JOURNAL OF BUILDING ENGINEERING, 2024, 91
  • [39] A post-tensioned self-centering yielding brace system: development and performance-based seismic analysis
    Nobahar, Elnaz
    Asgarian, Behrouz
    Mercan, Oya
    Soroushian, Siavash
    STRUCTURE AND INFRASTRUCTURE ENGINEERING, 2021, 17 (03) : 392 - 412
  • [40] Development of a self-centering tension-only brace for seismic protection of frame structures
    Chi, Pei
    Guo, Tong
    Peng, Yang
    Cao, Dafu
    Dong, Jun
    STEEL AND COMPOSITE STRUCTURES, 2018, 26 (05) : 573 - 582