Ziv-Zakai Bound for Compressive Time Delay Estimation From Zero-Mean Gaussian Signal

被引:6
作者
Zhang, Zongyu [1 ,2 ]
Shi, Zhiguo [1 ,3 ]
Gu, Yujie [4 ]
Greco, Maria Sabrina [2 ]
Gini, Fulvio [2 ]
机构
[1] Zhejiang Univ, Coll Informat Sci & Elect Engn, Hangzhou 310027, Peoples R China
[2] Univ Pisa, Dept Informat Engn, I-56122 Pisa, Italy
[3] Key Lab Collaborat Sensing & Autonomous Unmanned S, Hangzhou 310027, Peoples R China
[4] Aptiv, Adv Safety & User Experience, Agoura Hills, CA 91301 USA
基金
中国国家自然科学基金;
关键词
Delay effects; Estimation; Radar; Signal to noise ratio; Kernel; Time measurement; Eigenvalues and eigenfunctions; Bayesian estimation; compressive sensing; mean square error; time delay estimation; stochastic Ziv-Zakai bound; SENSING KERNEL OPTIMIZATION; PARAMETER-ESTIMATION; MIMO RADAR;
D O I
10.1109/LSP.2023.3295334
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Existing stochastic Ziv-Zakai bound (ZZB) for compressive time delay estimation from compressed measurement relies on a Gaussian approximation, which makes it inaccurate in the asymptotic region when the stochastic component dominates the received signals. In this letter, we apply different random projections on zero-mean Gaussian received signal to obtain multiple compressed measurements, based on which the log-likelihood ratio test is exactly formulated as the difference of two generalized integer Gamma variables. Accordingly, we further derive the exact expression of the stochastic ZZB for compressive time delay estimation from zero-mean Gaussian signal. Simulation results show that the derived ZZB is globally tight to accurately predict the estimation performance regardless of the number of compressed measurements, and it can also accurately predict the threshold signal-to-noise ratio for the estimator when the number of compressed measurements is large.
引用
收藏
页码:1112 / 1116
页数:5
相关论文
共 36 条
[1]  
Amin M, 2015, COMPRESSIVE SENSING FOR URBAN RADAR, P1
[2]  
Baraniuk Richard, 2007, 2007 IEEE Radar Conference, P128, DOI 10.1109/RADAR.2007.374203
[3]  
Bekker A., 2020, Computational and Methodological Statistics and Biostatistics: Contemporary Essays in Advancement
[4]   Extended Ziv-Zakai lower bound for vector parameter estimation [J].
Bell, KL ;
Steinberg, Y ;
Ephraim, Y ;
VanTrees, HL .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1997, 43 (02) :624-637
[5]   Explicit Ziv-Zakai lower bound for bearing estimation [J].
Bell, KL ;
Ephraim, Y ;
VanTrees, HL .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1996, 44 (11) :2810-2824
[6]  
Candès EJ, 2008, IEEE SIGNAL PROC MAG, V25, P21, DOI 10.1109/MSP.2007.914731
[7]   A Class of Weiss-Weinstein Bounds and Its Relationship With the Bobrovsky-Mayer-Wolf-Zakai Bounds [J].
Chaumette, Eric ;
Renaux, Alexandre ;
El Korso, Mohammed Nabil .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2017, 63 (04) :2226-2240
[8]   IMPROVED LOWER BOUNDS ON SIGNAL PARAMETER ESTIMATION [J].
CHAZAN, D ;
ZAKAI, M ;
ZIV, J .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1975, 21 (01) :90-93
[9]   Ziv-Zakai Bound for Joint Parameter Estimation in MIMO Radar Systems [J].
Chiriac, Vlad M. ;
He, Qian ;
Haimovich, Alexander M. ;
Blum, Rick S. .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2015, 63 (18) :4956-4968
[10]  
Cramer H., 1946, Mathematical methods of statistics.