Free-Standing Polymer Covalent Organic Framework Membrane with High Proton Conductivity and Structure Stability

被引:5
作者
Wang, Le [1 ]
Wang, Chengxiang [1 ]
Ren, Yang [1 ]
Yang, Zhirong [1 ]
Zheng, Yifan [1 ]
Zhang, Qingqing [1 ]
Wu, Wenjia [1 ]
Wang, Jingtao [1 ]
机构
[1] Zhengzhou Univ, Sch Chem Engn, Zhengzhou 450001, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
polymer-tethered covalent organic framework; protonexchange membrane; structure stability; proton conductivity; hydrogen fuel cell; HIGH-TEMPERATURE; FUEL-CELLS; ELECTROLYTE; TRANSPORT;
D O I
10.1021/acsapm.3c01460
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The two-dimensional covalent organic framework (COF)with continuousand stable pores as well as tunable functional groups is consideredas promising proton exchange membrane (PEM) material. However, dueto the strong rigidity and inferior processability of COFs, it stillremains challenging to prepare a self-standing and robust membrane.Herein, self-standing and robust thin COF membranes (20 & mu;m inthickness) were fabricated through the in situ involvement of hyperbranchedpolyethylenimine (HPEI). The HPEI cross-links the adjacent COF particlesand enhances the interactions among them. The involvement of HPEIenables polyCOM to have excellent structure ability, mechanical property,and proton conduction ability. As a result, poly(0.2)COMobtains a high water uptake of 72.3% at 80 & DEG;C (vs 49.11% forNafion) with a negligible swelling ratio of 1.5%. In addition, thetensile strength of poly(0.2)COM reaches 45.4 MPa, 2.4 timeshigher than that of the TpPa-SO3H membrane (13.26 MPa).Importantly, polyCOM shows high proton conductivities of 223 and 35mS cm(-1) under saturated humidity and a low relativehumidity (RH) of 30%, respectively, far exceeding those of the commercialNafion membrane (80 and 5.5 mS cm(-1)). Moreover,poly(0.02)COM acquires a remarkable power density of 111.1mW cm(-2) and a current density of 664 mA cm(-2) at 80 & DEG;C and 40% RH.
引用
收藏
页码:7562 / 7570
页数:9
相关论文
共 50 条
  • [21] Cellulose nanofiber-connected covalent organic framework nanosheets composite membrane for proton conduction
    He, Bo
    Lin, Yunfei
    Zhou, Qi
    Tang, Shaokun
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 69 : 391 - 400
  • [22] Remarkably enhancing proton conductivity by intrinsic surface sulfonation of a pyrazine-linked covalent organic framework
    Luan, Tian-Xiang
    Wang, Qiurong
    Zhang, Pengtu
    Li, Wanchao
    Kong, Shuo
    Feng, Yijing
    Yuan, Shiling
    Li, Pei-Zhou
    [J]. SCIENCE CHINA-MATERIALS, 2024, 67 (01) : 125 - 133
  • [23] Fabrication of Nafion/zwitterion-functionalized covalent organic framework composite membranes with improved proton conductivity
    Li, Yan
    Wu, Hong
    Yin, Yongheng
    Cao, Li
    He, Xueyi
    Shi, Benbing
    Li, Jinzhao
    Xu, Mingzhao
    Jiang, Zhongyi
    [J]. JOURNAL OF MEMBRANE SCIENCE, 2018, 568 : 1 - 9
  • [24] Strongly Anisotropic Thermal Conductivity of Free-Standing Reduced Graphene Oxide Films Annealed at High Temperature
    Renteria, Jackie D.
    Ramirez, Sylvester
    Malekpour, Hoda
    Alonso, Beatriz
    Centeno, Alba
    Zurutuza, Amaia
    Cocemasov, Alexandr I.
    Nika, Denis L.
    Balandin, Alexander A.
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2015, 25 (29) : 4664 - 4672
  • [25] Study of Stability and Proton Conductivity of Zn-based Metal-Organic Framework
    Son, Younghu
    Rao, Purna Chandra
    Kim, Jiyun
    Park, Gyungse
    Yoon, Minyoung
    [J]. BULLETIN OF THE KOREAN CHEMICAL SOCIETY, 2021, 42 (05) : 810 - 817
  • [26] Polybenzimidazole membrane crosslinked with quaternized polyaniline as high-temperature proton exchange membrane: Enhanced proton conductivity and stability
    Xiao, Yiming
    Shen, Xiaoyu
    Sun, Ranxin
    Wang, Songbo
    Xiang, Jun
    Zhang, Lei
    Cheng, Penggao
    Du, Xinjun
    Yin, Zhen
    Tang, Na
    [J]. JOURNAL OF MEMBRANE SCIENCE, 2022, 660
  • [27] Crystalline Porous Organic Polymer Bearing -SO3H Functionality for High Proton Conductivity
    Bhanja, Piyali
    Paui, Arnab
    Chatterjee, Sauvik
    Kaneti, Yusuf Valentino
    Na, Jongbeom
    Sugahara, Yoshiyuki
    Bhaumik, Asim
    Yamauchi, Yusuke
    [J]. ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2020, 8 (06) : 2423 - 2432
  • [28] Composite proton exchange membrane featuring a three-layer structure: Enhanced thermal stability, proton conductivity, and fuel cell performance
    Yin, Chongshan
    Chen, Deyuan
    Hu, Mengyao
    Jing, Huihua
    Qian, Libing
    He, Chunqing
    [J]. JOURNAL OF MEMBRANE SCIENCE, 2024, 707
  • [29] Adjust the arrangement of imidazole on the metal-organic framework to obtain hybrid proton exchange membrane with long-term stable high proton conductivity
    Zhang, Zhenguo
    Ren, Jiahui
    Xu, Jingmei
    Wang, Zhe
    He, Wenwen
    Wang, Shuang
    Yang, Xudong
    Du, Xinming
    Meng, Lingxin
    Zhao, Pengyun
    [J]. JOURNAL OF MEMBRANE SCIENCE, 2020, 607 (607)
  • [30] High Proton Conductivity of the UiO-66-NH2-SPES Composite Membrane Prepared by Covalent Cross-Linking
    Xing, Yuan-Yuan
    Wang, Jiao
    Zhang, Chen-Xi
    Wang, Qing-Lun
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (27) : 33003 - 33012