A multimodal hybrid parallel network intrusion detection model

被引:99
|
作者
Shi, Shuxin [1 ]
Han, Dezhi [1 ]
Cui, Mingming [1 ]
机构
[1] Shanghai Maritime Univ, Coll Informat Engn, Shanghai, Peoples R China
关键词
Intrusion detection; network traffic; convolutional neural network; long short-term memory (LSTM); DETECTION SYSTEM; SCHEME;
D O I
10.1080/09540091.2023.2227780
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
With the rapid growth of Internet data traffic, the means of malicious attack become more diversified. The single modal intrusion detection model cannot fully exploit the rich feature information in the massive network traffic data, resulting in unsatisfactory detection results. To address this issue, this paper proposes a multimodal hybrid parallel network intrusion detection model (MHPN). The proposed model extracts network traffic features from two modalities: the statistical information of network traffic and the original load of traffic, and constructs appropriate neural network models for each modal information. Firstly, a two-branch convolutional neural network is combined with Long Short-Term Memory (LSTM) network to extract the spatio-temporal feature information of network traffic from the original load mode of traffic, and a convolutional neural network is used to extract the feature information of traffic statistics. Then, the feature information extracted from the two modalities is fused and fed to the CosMargin classifier for network traffic classification. The experimental results on the ISCX-IDS 2012 and CIC-IDS-2017 datasets show that the MHPN model outperforms the single-modal models and achieves an average accuracy of 99.98 % . The model also demonstrates strong robustness and a positive sample recognition rate.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] An efficient network intrusion detection
    Chen, Chia-Mei
    Chen, Ya-Lin
    Lin, Hsiao-Chung
    COMPUTER COMMUNICATIONS, 2010, 33 (04) : 477 - 484
  • [32] Deep Learning Applications for Intrusion Detection in Network Traffic
    Getman, A. I.
    Rybolovlev, D. A.
    Nikolskaya, A. G.
    PROGRAMMING AND COMPUTER SOFTWARE, 2024, 50 (07) : 493 - 510
  • [33] A Survey of CNN-Based Network Intrusion Detection
    Mohammadpour, Leila
    Ling, Teck Chaw
    Liew, Chee Sun
    Aryanfar, Alihossein
    APPLIED SCIENCES-BASEL, 2022, 12 (16):
  • [34] An efficient intrusion detection model based on convolutional spiking neural network
    Zhen Wang
    Fuad A. Ghaleb
    Anazida Zainal
    Maheyzah Md Siraj
    Xing Lu
    Scientific Reports, 14
  • [35] An Attention-Based Convolutional Neural Network for Intrusion Detection Model
    Wang, Zhen
    Ghaleb, Fuad A. A.
    IEEE ACCESS, 2023, 11 : 43116 - 43127
  • [36] An Efficient Network Intrusion Detection Model Based on Temporal Convolutional Networks
    Chen, Jinfu
    Yin, Shang
    Cai, Saihua
    Zhang, Chi
    Yin, Yemin
    Zhou, Ling
    2021 IEEE 21ST INTERNATIONAL CONFERENCE ON SOFTWARE QUALITY, RELIABILITY AND SECURITY (QRS 2021), 2021, : 768 - 775
  • [37] An optimized adaptive ensemble model with feature selection for network intrusion detection
    Yang, Zhongjun
    Liu, Zhi
    Zong, Xuejun
    Wang, Guogang
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2023, 35 (04):
  • [38] An efficient intrusion detection model based on convolutional spiking neural network
    Wang, Zhen
    Ghaleb, Fuad A.
    Zainal, Anazida
    Siraj, Maheyzah Md
    Lu, Xing
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [39] Hybrid intrusion detection model based on ordered sequences
    Alharby, A
    Imai, H
    COMPUTER NETWORK SECURITY, PROCEEDINGS, 2005, 3685 : 352 - 365
  • [40] A Study on Intrusion Detection Model Based on Hybrid Classifier
    Liu, Kewen
    Yang, Qingbo
    INTERNATIONAL CONFERENCE ON GRAPHIC AND IMAGE PROCESSING (ICGIP 2012), 2013, 8768