A Rigorously-Incremental Spatiotemporal Data Fusion Method for Fusing Remote Sensing Images

被引:6
作者
Jing, Weipeng [1 ]
Lou, Tongtong [1 ]
Wang, Zeyu [1 ,2 ]
Zou, Weitao [1 ]
Xu, Zekun [1 ]
Mohaisen, Linda [3 ]
Li, Chao [1 ]
Wang, Jian [4 ]
机构
[1] Northeast Forestry Univ, Coll Comp & Control Engn, Harbin 150040, Peoples R China
[2] Univ Sanya, Sch Informat & Intelligence Engn, Sanya 572000, Peoples R China
[3] King Abdulaziz Univ, Fac Comp & Informat Technol, Dept Informat Technol, Jeddah 21589, Saudi Arabia
[4] Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 100094, Peoples R China
基金
中国国家自然科学基金;
关键词
Registration error; rigorously-incremental spatiotemporal data fusion (RISDAF); spatiotemporal fusion; spatiotemporal increment; spectral unmixing; MODIS; REFLECTANCE; LANDSAT; ALGORITHM; MODEL; FRAMEWORK; NETWORK; NET;
D O I
10.1109/JSTARS.2023.3296468
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The spatiotemporal remote sensing images have significant importance in forest ecological monitoring, forest carbon management, and other related fields. Spatiotemporal data fusion technology of remote sensing images combines high spatiotemporal and high temporal resolution images to address the current limitation of single sensors in obtaining high spatiotemporal resolution. This technology has gained widespread attention in recent years. However, the current models still exhibit some shortcomings in dealing with land cover changes, such as poor clustering results, inaccurate incremental spatiotemporal calculations, and sensor differences. In this article, we propose a rigorously-incremental spatiotemporal data fusion method for fusing remote sensing images with different resolutions to address the aforementioned problems. The proposed method utilizes the particle swarm optimization Gaussian mixture model to extract endmembers and establishes a linear relationship between sensors to obtain accurate time increments. Furthermore, bicubic interpolation is used instead of thin plate spline interpolation for spatial interpolation, and also support vector regression is used to calculate weights for obtaining a weighted sum of temporal and spatial increments. In addition, sensor errors are allocated to the calculation of residuals. The experimental results show the efficacy of the proposed algorithm for fusing fine image Landsat with coarse image MODIS data and conclude that the proposed algorithm presents a better solution for heterogeneous data with strong phenological changes and regions with changes in surface types, which provides a better solution for remote sensing image fusion and, hence, improves the accuracy, stability, and robustness of data fusion.
引用
收藏
页码:6723 / 6738
页数:16
相关论文
共 50 条
[1]   Multitemporal fusion of Landsat/TM and ENVISAT/MERIS for crop monitoring [J].
Amoros-Lopez, Julia ;
Gomez-Chova, Luis ;
Alonso, Luis ;
Guanter, Luis ;
Zurita-Milla, Raul ;
Moreno, Jose ;
Camps-Valls, Gustavo .
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2013, 23 :132-141
[2]   Improving phenological monitoring of winter wheat by considering sensor spectral response in spatiotemporal image fusion [J].
Cao, Ziyang ;
Chen, Shaohui ;
Gao, Feng ;
Li, Xueke .
PHYSICS AND CHEMISTRY OF THE EARTH, 2020, 116
[3]   Spatiotemporal Fusion Network for Land Surface Temperature Based on a Conditional Variational Autoencoder [J].
Chen, Yuncheng ;
Yang, Yingbao ;
Pan, Xin ;
Meng, Xiangjin ;
Hu, Jia .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
[4]   A New Fusion Algorithm for Simultaneously Improving Spatio-Temporal Continuity and Quality of Remotely Sensed Soil Moisture Over the Tibetan Plateau [J].
Cui, Yaokui ;
Zeng, Chao ;
Chen, Xi ;
Fan, Wenjie ;
Liu, Haijiang ;
Liu, Yuan ;
Xiong, Wentao ;
Sun, Cong ;
Luo, Zengliang .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 :83-91
[5]   Spatiotemporal Fusion Modelling Using STARFM: Examples of Landsat 8 and Sentinel-2 NDVI in Bavaria [J].
Dhillon, Maninder Singh ;
Dahms, Thorsten ;
Kuebert-Flock, Carina ;
Steffan-Dewenter, Ingolf ;
Zhang, Jie ;
Ullmann, Tobias .
REMOTE SENSING, 2022, 14 (03)
[6]   Modelling Crop Biomass from Synthetic Remote Sensing Time Series: Example for the DEMMIN Test Site, Germany [J].
Dhillon, Maninder Singh ;
Dahms, Thorsten ;
Kuebert-Flock, Carina ;
Borg, Erik ;
Conrad, Christopher ;
Ullmann, Tobias .
REMOTE SENSING, 2020, 12 (11)
[7]   Very High Resolution Remote Sensing Imagery Classification Using a Fusion of Random Forest and Deep Learning Technique-Subtropical Area for Example [J].
Dong, Luofan ;
Du, Huaqiang ;
Mao, Fangjie ;
Han, Ning ;
Li, Xuejian ;
Zhou, Guomo ;
Zhu, Di'en ;
Zheng, Junlong ;
Zhang, Meng ;
Xing, Luqi ;
Liu, Tengyan .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 :113-128
[9]   Assessing the accuracy of blending Landsat-MODIS surface reflectances in two landscapes with contrasting spatial and temporal dynamics: A framework for algorithm selection [J].
Emelyanova, Irina V. ;
McVicar, Tim R. ;
Van Niel, Thomas G. ;
Li, Ling Tao ;
van Dijk, Albert I. J. M. .
REMOTE SENSING OF ENVIRONMENT, 2013, 133 :193-209
[10]   Integrating GEDI and Landsat: Spaceborne Lidar and Four Decades of Optical Imagery for the Analysis of Forest Disturbances and Biomass Changes in Italy [J].
Francini, Saverio ;
D'Amico, Giovanni ;
Vangi, Elia ;
Borghi, Costanza ;
Chirici, Gherardo .
SENSORS, 2022, 22 (05)