Power analysis for causal discovery

被引:4
作者
Kummerfeld, Erich [1 ]
Williams, Leland [1 ]
Ma, Sisi [1 ]
机构
[1] Univ Minnesota, Inst Hlth Informat, 516 Delaware St SE, Minneapolis, MN 55455 USA
关键词
Causal discovery; Graphical models; Power analysis; Simulation; LOCAL CAUSAL; SAMPLE-SIZE; SELECTION;
D O I
10.1007/s41060-023-00399-4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Causal discovery algorithms have the potential to impact many fields of science. However, substantial foundational work on the statistical properties of causal discovery algorithms is still needed. This paper presents what is to our knowledge the first method for conducting power analysis for causal discovery algorithms. The power sample characteristics of causal discovery algorithms typically cannot be described by a closed formula, but we resolve this problem by developing a new power sample analysis method based on standardized in silico simulation experiments. Our procedure generates data with carefully controlled statistical effect sizes in order to enable an accurate numerical power sample analysis. We present that method, apply it to generate an initial power analysis table, provide a web interface for searching this table, and show how the table or web interface can be used to solve several types of real-world power analysis problems, such as sample size planning, interpretation of results, and sensitivity analysis.
引用
收藏
页码:289 / 304
页数:16
相关论文
共 47 条
[1]  
Aliferis CF, 2010, J MACH LEARN RES, V11, P171
[2]   Causal Network Modeling of the Determinants of Drinking Behavior in Comorbid Alcohol Use and Anxiety Disorder [J].
Anker, Justin J. ;
Kummerfeld, Erich ;
Rix, Alexander ;
Burwell, Scott J. ;
Kushner, Matt G. .
ALCOHOLISM-CLINICAL AND EXPERIMENTAL RESEARCH, 2019, 43 (01) :91-97
[3]  
[Anonymous], 2014, Behaviormetrika, DOI [DOI 10.2333/BHMK.41.65, 10.2333/bhmk.41.65]
[4]   Plasma levels of interleukin-1 receptor antagonist (IL1Ra) predict radiographic progression of symptomatic knee osteoarthritis [J].
Attur, M. ;
Statnikov, A. ;
Samuels, J. ;
Li, Z. ;
Alekseyenko, A. V. ;
Greenberg, J. D. ;
Krasnokutsky, S. ;
Rybak, L. ;
Lu, Q. A. ;
Todd, J. ;
Zhou, H. ;
Jordan, J. M. ;
Kraus, V. B. ;
Aliferis, C. F. ;
Abramson, S. B. .
OSTEOARTHRITIS AND CARTILAGE, 2015, 23 (11) :1915-1924
[5]   FOUNDATIONS OF STRUCTURAL CAUSAL MODELS WITH CYCLES AND LATENT VARIABLES [J].
Bongers, Stephan ;
Forre, Patrick ;
Peters, Jonas ;
Mooij, Joris M. .
ANNALS OF STATISTICS, 2021, 49 (05) :2885-2915
[6]  
Bronstein M., 2021, WILLINGNESS VACCINAT
[7]  
Claassen Tom, Advances in Neural Information Processing Systems, V23, P415
[8]  
Cohen J., 1988, STAT POWER ANAL BEHA
[9]  
Cohen J., 1992, Curr. Dir. Psychol. Sci, V1, P98, DOI [10.1111/1467-8721.ep10768783, DOI 10.1111/1467-8721.EP10768783]
[10]  
Eberhardt F., 2017, Int. J. Data Sci. Anal., V3, P81, DOI [10.1007/s41060-016-0038-6, DOI 10.1007/S41060-016-0038-6]