Group Lasso based redundancy-controlled feature selection for fuzzy neural network

被引:1
作者
Yang, Jun [1 ]
Xu, Yongyong [1 ]
Wang, Bin [1 ]
Li, Bo [1 ]
Huang, Ming [1 ]
Gao, Tao [1 ]
机构
[1] 15th Res Inst China Elect Technol Grp Corp, Beijing 100191, Peoples R China
基金
中国国家自然科学基金;
关键词
A; MUTUAL INFORMATION; IDENTIFICATION; RELEVANCE;
D O I
10.1007/s11801-023-2053-x
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
If there are a lot of inputs, the readability of the "If-then" fuzzy rule is reduced, and the complexity of the fuzzy neural network structure will be increased. Hence, to optimize the structure of the fuzzy rule based neural network, a group Lasso based redundancy-controlled feature selection (input pruning) method is proposed. For realizing feature selection, the linear/nonlinear redundancy between features is considered, and the Pearson's correlation coefficient is employed to construct the additive redundancy-controlled regularizer in the error function. In addition, considering the past gradient information, a novel parameter optimization method is presented. Finally, we demonstrate the effectiveness of our method on two benchmark classification datasets.
引用
收藏
页码:284 / 289
页数:6
相关论文
共 23 条
  • [21] Xue GD, 2022, Arxiv, DOI arXiv:2201.03187
  • [22] Yu L, 2004, J MACH LEARN RES, V5, P1205
  • [23] Feature Selection With Redundancy-Constrained Class Separability
    Zhou, Luping
    Wang, Lei
    Shen, Chunhua
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 2010, 21 (05): : 853 - 858