Analysis of fractional stochastic evolution equations by using Hilfer derivative of finite approximate controllability

被引:17
作者
Moumen, Abdelkader [1 ]
Shafqat, Ramsha [2 ]
Alsinai, Ammar [3 ]
Boulares, Hamid [4 ]
Cancan, Murat [5 ]
Jeelani, Mdi Begum [6 ]
机构
[1] Univ Hail, Fac Sci, Dept Math, Hail 55425, Saudi Arabia
[2] Univ Lahore, Dept Math & Stat, Sargodha 40100, Pakistan
[3] Kuvempu Univ, Dept Math, Shivamogga 577451, Karnataka, India
[4] Univ 8 May 1945 Guelma, Fac MISM, Dept Math, Lab Anal & Control Differential Equat ACED, Guelma, Afghanistan
[5] Yuzuncu Yil Univ, Fac Educ, TR-65080 Van, Turkiye
[6] Imam Mohammad Ibn Saud Islamic Univ, Coll Sci, Dept Math & Stat, Riyadh 13314, Saudi Arabia
来源
AIMS MATHEMATICS | 2023年 / 8卷 / 07期
关键词
stochastic calculus; Hilfer derivative; finite approximate controllability; semi; -group; fixed; point theory; stochastic evolution equations; NONLOCAL CONDITIONS; CAUCHY-PROBLEMS; MILD SOLUTIONS; ORDER; EXISTENCE; UNIQUENESS;
D O I
10.3934/math.2023821
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The approximate controllability of a class of fractional stochastic evolution equations (FSEEs) are discussed in this study utilizes the Hilbert space by using Hilfer derivative. For different approaches, we remove the Lipschitz or compactness conditions and merely have to assume a weak growth requirement. The fixed point theorem, the diagonal argument, and approximation methods serve as the foundation for the study. The abstract theory is demonstratedusing an example.
引用
收藏
页码:16094 / 16114
页数:21
相关论文
共 43 条
[21]   A mapping from Schrodinger equation to Navier-Stokes equations through the product-like fractal geometry, fractal time derivative operator and variable thermal conductivity [J].
El-Nabulsi, Rami Ahmad ;
Anukool, Waranont .
ACTA MECHANICA, 2021, 232 (12) :5031-5039
[22]   Fractional-order diffusion-wave equation [J].
ElSayed, AMA .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1996, 35 (02) :311-322
[23]   Existence and uniqueness for a problem involving Hilfer fractional derivative [J].
Furati, K. M. ;
Kassim, M. D. ;
Tatar, N. E- .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 64 (06) :1616-1626
[24]   Approximate controllability of semilinear evolution equations of fractional order with nonlocal and impulsive conditions via an approximating technique [J].
Ge, Fu-Dong ;
Zhou, Hua-Cheng ;
Kou, Chun-Hai .
APPLIED MATHEMATICS AND COMPUTATION, 2016, 275 :107-120
[25]  
Hilfer R., 2000, World Scientific, DOI DOI 10.1142/9789812817747
[26]   Nonlocal Cauchy problems governed by compact operator families [J].
Jin, LA ;
Liu, J ;
Xiao, TJ .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 57 (02) :183-189
[27]  
Kilbas A.A., 2006, THEORY APPL FRACTION, V204, DOI DOI 10.1016/S0304-0208(06)80001-0
[28]   On the approximate controllability of fractional evolution equations with compact analytic semigroup [J].
Mahmudov, N. I. ;
Zorlu, S. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 259 :194-204
[29]   Loop-free tensor networks for high-energy physics [J].
Montangero, Simone ;
Rico, Enrique ;
Silvi, Pietro .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2022, 380 (2216) :20210065
[30]   Multiplicatively Simpson Type Inequalities via Fractional Integral [J].
Moumen, Abdelkader ;
Boulares, Hamid ;
Meftah, Badreddine ;
Shafqat, Ramsha ;
Alraqad, Tariq ;
Ali, Ekram E. E. ;
Khaled, Zennir .
SYMMETRY-BASEL, 2023, 15 (02)