Analysis of fractional stochastic evolution equations by using Hilfer derivative of finite approximate controllability

被引:17
作者
Moumen, Abdelkader [1 ]
Shafqat, Ramsha [2 ]
Alsinai, Ammar [3 ]
Boulares, Hamid [4 ]
Cancan, Murat [5 ]
Jeelani, Mdi Begum [6 ]
机构
[1] Univ Hail, Fac Sci, Dept Math, Hail 55425, Saudi Arabia
[2] Univ Lahore, Dept Math & Stat, Sargodha 40100, Pakistan
[3] Kuvempu Univ, Dept Math, Shivamogga 577451, Karnataka, India
[4] Univ 8 May 1945 Guelma, Fac MISM, Dept Math, Lab Anal & Control Differential Equat ACED, Guelma, Afghanistan
[5] Yuzuncu Yil Univ, Fac Educ, TR-65080 Van, Turkiye
[6] Imam Mohammad Ibn Saud Islamic Univ, Coll Sci, Dept Math & Stat, Riyadh 13314, Saudi Arabia
来源
AIMS MATHEMATICS | 2023年 / 8卷 / 07期
关键词
stochastic calculus; Hilfer derivative; finite approximate controllability; semi; -group; fixed; point theory; stochastic evolution equations; NONLOCAL CONDITIONS; CAUCHY-PROBLEMS; MILD SOLUTIONS; ORDER; EXISTENCE; UNIQUENESS;
D O I
10.3934/math.2023821
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The approximate controllability of a class of fractional stochastic evolution equations (FSEEs) are discussed in this study utilizes the Hilbert space by using Hilfer derivative. For different approaches, we remove the Lipschitz or compactness conditions and merely have to assume a weak growth requirement. The fixed point theorem, the diagonal argument, and approximation methods serve as the foundation for the study. The abstract theory is demonstratedusing an example.
引用
收藏
页码:16094 / 16114
页数:21
相关论文
共 43 条
[1]   A Method for Solving Time-Fractional Initial Boundary Value Problems of Variable Order [J].
Abuasbeh, Kinda ;
Kanwal, Asia ;
Shafqat, Ramsha ;
Taufeeq, Bilal ;
Almulla, Muna A. A. ;
Awadalla, Muath .
SYMMETRY-BASEL, 2023, 15 (02)
[2]   Analysis of Controllability of Fractional Functional Random Integroevolution Equations with Delay [J].
Abuasbeh, Kinda ;
Shafqat, Ramsha ;
Alsinai, Ammar ;
Awadalla, Muath .
SYMMETRY-BASEL, 2023, 15 (02)
[3]   Analysis of the Mathematical Modelling of COVID-19 by Using Mild Solution with Delay Caputo Operator [J].
Abuasbeh, Kinda ;
Shafqat, Ramsha ;
Alsinai, Ammar ;
Awadalla, Muath .
SYMMETRY-BASEL, 2023, 15 (02)
[4]   Fractional Brownian Motion for a System of Fuzzy Fractional Stochastic Differential Equation [J].
Abuasbeh, Kinda ;
Shafqat, Ramsha .
JOURNAL OF MATHEMATICS, 2022, 2022
[5]   Oscillatory behavior of solution for fractional order fuzzy neutral predator-prey system [J].
Abuasbeh, Kinda ;
Shafqat, Ramsha ;
Niazi, Azmat Ullah Khan ;
Awadalla, Muath .
AIMS MATHEMATICS, 2022, 7 (11) :20383-20400
[6]   Existence and dimension of the set of mild solutions to semilinear fractional differential inclusions [J].
Agarwal, Ravi P. ;
Ahmad, Bashir ;
Alsaedi, Ahmad ;
Shahzad, Naseer .
ADVANCES IN DIFFERENCE EQUATIONS, 2012,
[7]   Topological Structure of Solution Sets of Fractional Control Delay Problem [J].
Al Ghafli, Ahmed A. ;
Shafqat, Ramsha ;
Niazi, Azmat Ullah Khan ;
Abuasbeh, Kinda ;
Awadalla, Muath .
FRACTAL AND FRACTIONAL, 2023, 7 (01)
[8]   On the modelling of spatially heterogeneous nonlocal diffusion: deciding factors and preferential position of individuals [J].
Alfaro, Matthieu ;
Giletti, Thomas ;
Kim, Yong-Jung ;
Peltier, Gwenael ;
Seo, Hyowon .
JOURNAL OF MATHEMATICAL BIOLOGY, 2022, 84 (05)
[9]   The Solvability and Optimal Controls for Impulsive Fractional Stochastic Integro-Differential Equations via Resolvent Operators [J].
Balasubramaniam, P. ;
Tamilalagan, P. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2017, 174 (01) :139-155
[10]   Existence results for fractional order semilinear functional differential equations with nondense domain [J].
Belmekki, Mohammed ;
Benchohra, Mouffak .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (02) :925-932