Applications of Machine Learning in Chronic Myeloid Leukemia

被引:9
作者
Elhadary, Mohamed [1 ]
Elsabagh, Ahmed Adel [1 ]
Ferih, Khaled [1 ]
Elsayed, Basel [1 ]
Elshoeibi, Amgad M. [1 ]
Kaddoura, Rasha [2 ]
Akiki, Susanna [3 ]
Ahmed, Khalid [4 ]
Yassin, Mohamed [5 ]
机构
[1] Qatar Univ, QU Hlth, Coll Med, Doha 2713, Qatar
[2] Hamad Med Corp HMC, Heart Hosp, Pharm Dept, Doha 3050, Qatar
[3] Hamad Med Corp HMC, Diagnost Genom Div, Doha 3050, Qatar
[4] Hamad Med Corp HMC, Natl Ctr Canc Care & Res NCCCR, Dept Hematol, Doha 3050, Qatar
[5] Hamad Med Corp HMC, Natl Ctr Canc Care & Res NCCCR, Hematol Sect, Med Oncol, Doha 3050, Qatar
关键词
artificial intelligence; chronic myeloid leukemia; machine learning; convolutional neural networks; hemoglobinopathies; CHRONIC MYELOGENOUS LEUKEMIA; FLOW-CYTOMETRY; ARTIFICIAL-INTELLIGENCE; PERIPHERAL-BLOOD; DIAGNOSIS; CLASSIFICATION; DISEASE; BIOLOGY; RECOMMENDATIONS; MECHANISMS;
D O I
10.3390/diagnostics13071330
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm characterized by dysregulated growth and the proliferation of myeloid cells in the bone marrow caused by the BCR-ABL1 fusion gene. Clinically, CML demonstrates an increased production of mature and maturing granulocytes, mainly neutrophils. When a patient is suspected to have CML, peripheral blood smears and bone marrow biopsies may be manually examined by a hematologist. However, confirmatory testing for the BCR-ABL1 gene is still needed to confirm the diagnosis. Despite tyrosine kinase inhibitors (TKIs) being the mainstay of treatment for patients with CML, different agents should be used in different patients given their stage of disease and comorbidities. Moreover, some patients do not respond well to certain agents and some need more aggressive courses of therapy. Given the innovations and development that machine learning (ML) and artificial intelligence (AI) have undergone over the years, multiple models and algorithms have been put forward to help in the assessment and treatment of CML. In this review, we summarize the recent studies utilizing ML algorithms in patients with CML. The search was conducted on the PubMed/Medline and Embase databases and yielded 66 full-text articles and abstracts, out of which 11 studies were included after screening against the inclusion criteria. The studies included show potential for the clinical implementation of ML models in the diagnosis, risk assessment, and treatment processes of patients with CML.
引用
收藏
页数:14
相关论文
共 51 条
[1]   Clinicopathological Variables and Outcome in Chronic Myeloid Leukemia Associated With BCR-ABL1 Transcript Type and Body Weight: An Outcome of European LeukemiaNet Project [J].
Abdulla, Mohammad A. J. ;
Chandra, Prem ;
El Akiki, Susanna ;
Aldapt, Mahmood B. ;
Sardar, Sundus ;
Chapra, Ammar ;
Nashwan, Abdulqadir J. ;
Sorio, Claudio ;
Tomasello, Luisa ;
Boni, Christian ;
Yassin, Mohamed A. .
CANCER CONTROL, 2021, 28
[2]   Assessment of Dasatinib Versus Nilotinib as Upfront Therapy for Chronic Phase of Chronic Myeloid Leukemia in Qatar: A Cost-Effectiveness Analysis [J].
Adel, Ahmad ;
Abushanab, Dina ;
Hamad, Anas ;
Abdulla, Mohammad ;
Izham, Mohamed ;
Yassin, Mohamed .
CANCER CONTROL, 2021, 28
[3]  
Al-Dewik N.I., 2014, QSCIENCE CONNECT, V2014, P24, DOI [10.5339/connect.2014.24, DOI 10.5339/CONNECT.2014.24]
[4]   International Consensus Classification of Myeloid Neoplasms and Acute Leukemias: integrating morphologic, clinical, and genomic data [J].
Arber, Daniel A. ;
Orazi, Attilio ;
Hasserjian, Robert P. ;
Borowitz, Michael J. ;
Calvo, Katherine R. ;
Kvasnicka, Hans-Michael ;
Wang, Sa A. ;
Bagg, Adam ;
Barbui, Tiziano ;
Branford, Susan ;
Bueso-Ramos, Carlos E. ;
Cortes, Jorge E. ;
Dal Cin, Paola ;
DiNardo, Courtney D. ;
Dombret, Herve ;
Duncavage, Eric J. ;
Ebert, Benjamin L. ;
Estey, Elihu H. ;
Facchetti, Fabio ;
Foucar, Kathryn ;
Gangat, Naseema ;
Gianelli, Umberto ;
Godley, Lucy A. ;
Gokbuget, Nicola ;
Gotlib, Jason ;
Hellstrom-Lindberg, Eva ;
Hobbs, Gabriela S. ;
Hoffman, Ronald ;
Jabbour, Elias J. ;
Kiladjian, Jean-Jacques ;
Larson, Richard A. ;
Le Beau, Michelle M. ;
Loh, Mignon L. -C. ;
Lowenberg, Bob ;
Macintyre, Elizabeth ;
Malcovati, Luca ;
Mullighan, Charles G. ;
Niemeyer, Charlotte ;
Odenike, Olatoyosi M. ;
Ogawa, Seishi ;
Orfao, Alberto ;
Papaemmanuil, Elli ;
Passamonti, Francesco ;
Porkka, Kimmo ;
Pui, Ching-Hon ;
Radich, Jerald P. ;
Reiter, Andreas ;
Rozman, Maria ;
Rudelius, Martina ;
Savona, Michael R. .
BLOOD, 2022, 140 (11) :1200-1228
[5]   The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia [J].
Arber, Daniel A. ;
Orazi, Attilio ;
Hasserjian, Robert ;
Thiele, Jurgen ;
Borowitz, Michael J. ;
Le Beau, Michelle M. ;
Bloomfield, Clara D. ;
Cazzola, Mario ;
Vardiman, James W. .
BLOOD, 2016, 127 (20) :2391-2405
[6]   Evaluation of Hepatitis B Reactivation Among Patients With Chronic Myeloid Leukemia Treated With Tyrosine Kinase Inhibitors [J].
Atteya, Asmaa ;
Ahmad, Aiman ;
Daghstani, Dima ;
Mushtaq, Kamran ;
Yassin, Mohamed A. .
CANCER CONTROL, 2020, 27 (01)
[7]   Incorporating Machine Learning into Established Bioinformatics Frameworks [J].
Auslander, Noam ;
Gussow, Ayal B. ;
Koonin, Eugene V. .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (06) :1-19
[8]   A review of the European LeukemiaNet recommendations for the management of CML [J].
Baccarani, Michele ;
Castagnetti, Fausto ;
Gugliotta, Gabriele ;
Rosti, Gianantonio .
ANNALS OF HEMATOLOGY, 2015, 94 :S141-S147
[9]   Big Data and Machine Learning in Health Care [J].
Beam, Andrew L. ;
Kohane, Isaac S. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2018, 319 (13) :1317-1318
[10]   IoMT-Based Automated Detection and Classification of Leukemia Using Deep Learning [J].
Bibi, Nighat ;
Sikandar, Misba ;
Din, Ikram Ud ;
Almogren, Ahmad ;
Ali, Sikandar .
JOURNAL OF HEALTHCARE ENGINEERING, 2020, 2020