Credit Card Fraud Detection Using Various Machine Learning and Deep Learning Approaches

被引:0
|
作者
Gorte, Ashvini S. [1 ]
Mohod, S. W. [1 ]
Keole, R. R. [2 ]
Mahore, T. R. [3 ]
Pande, Sagar [4 ]
机构
[1] DRGIT & R, Comp Sci & Engineer, Amravati, India
[2] HVPM, Informat Technol, Amravati, India
[3] DRGIT & R, Comp Sci & Engn, Amravati, India
[4] VIT AP, Sch Comp Sci & Engn, Amaravati, Andhra Pradesh, India
来源
INTERNATIONAL CONFERENCE ON INNOVATIVE COMPUTING AND COMMUNICATIONS, ICICC 2022, VOL 3 | 2023年 / 492卷
关键词
Credit card; Machine learning; Random forest; Frauds; Prevention; Algorithms;
D O I
10.1007/978-981-19-3679-1_52
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
It is evident that the evolution in technology has surpassed expectations and reached different heights in a shorter span of time and with evolving technology; a lot of changes have been introduced in our lives, and one such change is the replacement of traditional payment methods with the credit card system. Credit card use increases the most during online shopping. With the huge demand for credit cards worldwide, credit card fraud cases to are increasing rapidly. In this paper, four machine learning algorithms that are decision tree, random forest, logistic regression, and Naive Bayes have been used for training the models. Also, deep neural networks have been implemented for model training which is giving more promising results compared to the machine learning algorithms. The accuracy of each algorithm used in the implementation of the credit card fraud detection has been compared and analyzed.
引用
收藏
页码:621 / 628
页数:8
相关论文
共 50 条
  • [1] Credit Card Fraud Detection Based on Machine and Deep Learning
    Najadat, Hassan
    Altiti, Ola
    Abu Aqouleh, Ayah
    Younes, Mutaz
    2020 11TH INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION SYSTEMS (ICICS), 2020, : 204 - 208
  • [2] Credit Card Fraud Detection Using Machine Learning
    Sailusha, Ruttala
    Gnaneswar, V
    Ramesh, R.
    Rao, G. Ramakoteswara
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND CONTROL SYSTEMS (ICICCS 2020), 2020, : 1264 - 1270
  • [3] Machine Learning Based on Resampling Approaches and Deep Reinforcement Learning for Credit Card Fraud Detection Systems
    Tran Khanh Dang
    Thanh Cong Tran
    Luc Minh Tuan
    Mai Viet Tiep
    APPLIED SCIENCES-BASEL, 2021, 11 (21):
  • [4] Credit Card Fraud Detection with Machine Learning Methods
    Goy, Gokhan
    Gezer, Cengiz
    Gungor, Vehbi Cagri
    2019 4TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ENGINEERING (UBMK), 2019, : 350 - 354
  • [5] Autonomous credit card fraud detection using machine learning approach
    Roseline, J. Femila
    Naidu, Gbsr
    Pandi, V. Samuthira
    Rajasree, S. Alamelu Alias
    Mageswari, Dr N.
    COMPUTERS & ELECTRICAL ENGINEERING, 2022, 102
  • [6] Enhanced Credit Card Fraud Detection Model Using Machine Learning
    Alfaiz, Noor Saleh
    Fati, Suliman Mohamed
    ELECTRONICS, 2022, 11 (04)
  • [7] Credit card fraud detection using machine learning algorithms
    de Souza, Daniel H. M.
    Bordin Jr, Claudio J.
    REVISTA BRASILEIRA DE COMPUTACAO APLICADA, 2023, 15 (01): : 1 - 11
  • [8] Credit Card Fraud Detection Using State-of-the-Art Machine Learning and Deep Learning Algorithms
    Alarfaj, Fawaz Khaled
    Malik, Iqra
    Khan, Hikmat Ullah
    Almusallam, Naif
    Ramzan, Muhammad
    Ahmed, Muzamil
    IEEE ACCESS, 2022, 10 : 39700 - 39715
  • [9] Fraud Detection using Machine Learning and Deep Learning
    Raghavan, Pradheepan
    El Gayar, Neamat
    PROCEEDINGS OF 2019 INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND KNOWLEDGE ECONOMY (ICCIKE' 2019), 2019, : 335 - 340
  • [10] Credit Card Fraud Detection - Machine Learning methods
    Varmedja, Dejan
    Karanovic, Mirjana
    Sladojevic, Srdjan
    Arsenovic, Marko
    Anderla, Andras
    2019 18TH INTERNATIONAL SYMPOSIUM INFOTEH-JAHORINA (INFOTEH), 2019,