Global-and-Local Collaborative Learning for Co-Salient Object Detection

被引:62
作者
Cong, Runmin [1 ,2 ,3 ]
Yang, Ning [1 ,2 ]
Li, Chongyi [4 ]
Fu, Huazhu [5 ]
Zhao, Yao [1 ,2 ]
Huang, Qingming [6 ,7 ,8 ,9 ]
Kwong, Sam [10 ,11 ]
机构
[1] Beijing Jiaotong Univ, Inst Informat Sci, Beijing 100044, Peoples R China
[2] Beijing Jiaotong Univ, Beijing Key Lab Adv Informat Sci & Network Techno, Beijing 100044, Peoples R China
[3] City Univ Hong Kong, Dept Comp Sci, Hong Kong, Peoples R China
[4] Nanyang Technol Univ, Sch Comp Sci & Engn, Singapore, Singapore
[5] ASTAR, Inst High Performance Comp, Singapore, Singapore
[6] Univ Chinese Acad Sci, Sch Comp Sci & Technol, Beijing 101408, Peoples R China
[7] Univ Chinese Acad Sci, Key Lab Big Data Min & Knowledge Management, Beijing 101408, Peoples R China
[8] Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China
[9] Peng Cheng Lab, Shenzhen 518055, Peoples R China
[10] City Univ Hong Kong, Dept Comp Sci, Hong Kong, Peoples R China
[11] City Univ Hong Kong Shenzhen Res Inst, Shenzhen 51800, Peoples R China
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
Semantics; Task analysis; Feature extraction; Convolution; Object detection; Computational modeling; Collaborative work; 3-D convolution; co-salient object detection (CoSOD); global correspondence modeling (GCM); local correspondence modeling (LCM); NETWORK; DENSE;
D O I
10.1109/TCYB.2022.3169431
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The goal of co-salient object detection (CoSOD) is to discover salient objects that commonly appear in a query group containing two or more relevant images. Therefore, how to effectively extract interimage correspondence is crucial for the CoSOD task. In this article, we propose a global-and-local collaborative learning (GLNet) architecture, which includes a global correspondence modeling (GCM) and a local correspondence modeling (LCM) to capture the comprehensive interimage corresponding relationship among different images from the global and local perspectives. First, we treat different images as different time slices and use 3-D convolution to integrate all intrafeatures intuitively, which can more fully extract the global group semantics. Second, we design a pairwise correlation transformation (PCT) to explore similarity correspondence between pairwise images and combine the multiple local pairwise correspondences to generate the local interimage relationship. Third, the interimage relationships of the GCM and LCM are integrated through a global-and-local correspondence aggregation (GLA) module to explore more comprehensive interimage collaboration cues. Finally, the intra and inter features are adaptively integrated by an intra-and-inter weighting fusion (AEWF) module to learn co-saliency features and predict the co-saliency map. The proposed GLNet is evaluated on three prevailing CoSOD benchmark datasets, demonstrating that our model trained on a small dataset (about 3k images) still outperforms 11 state-of-the-art competitors trained on some large datasets (about 8k-200k images).
引用
收藏
页码:1920 / 1931
页数:12
相关论文
共 80 条
[1]  
Achanta R, 2009, PROC CVPR IEEE, P1597, DOI 10.1109/CVPRW.2009.5206596
[2]   iCoseg: Interactive Co-segmentation with Intelligent Scribble Guidance [J].
Batra, Dhruv ;
Kowdle, Adarsh ;
Parikh, Devi ;
Luo, Jiebo ;
Chen, Tsuhan .
2010 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2010, :3169-3176
[3]   DPANet: Depth Potentiality-Aware Gated Attention Network for RGB-D Salient Object Detection [J].
Chen, Zuyao ;
Cong, Runmin ;
Xu, Qianqian ;
Huang, Qingming .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 :7012-7024
[4]  
Chen ZY, 2020, AAAI CONF ARTIF INTE, V34, P10599
[5]   Saliency Detection for Stereoscopic Images Based on Depth Confidence Analysis and Multiple Cues Fusion [J].
Cong, Runmin ;
Lei, Jianjun ;
Zhang, Changqing ;
Huang, Qingming ;
Cao, Xiaochun ;
Hou, Chunping .
IEEE SIGNAL PROCESSING LETTERS, 2016, 23 (06) :819-823
[6]   RRNet: Relational Reasoning Network With Parallel Multiscale Attention for Salient Object Detection in Optical Remote Sensing Images [J].
Cong, Runmin ;
Zhang, Yumo ;
Fang, Leyuan ;
Li, Jun ;
Zhao, Yao ;
Kwong, Sam .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
[7]   Going From RGB to RGBD Saliency: A Depth-Guided Transformation Model [J].
Cong, Runmin ;
Lei, Jianjun ;
Fu, Huazhu ;
Hou, Junhui ;
Huang, Qingming ;
Kwong, Sam .
IEEE TRANSACTIONS ON CYBERNETICS, 2020, 50 (08) :3627-3639
[8]   HSCS: Hierarchical Sparsity Based Co-saliency Detection for RGBD Images [J].
Cong, Runmin ;
Lei, Jianjun ;
Fu, Huazhu ;
Huang, Qingming ;
Cao, Xiaochun ;
Ling, Nam .
IEEE TRANSACTIONS ON MULTIMEDIA, 2019, 21 (07) :1660-1671
[9]   Video Saliency Detection via Sparsity-Based Reconstruction and Propagation [J].
Cong, Runmin ;
Lei, Jianjun ;
Fu, Huazhu ;
Porikli, Fatih ;
Huang, Qingming ;
Hou, Chunping .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (10) :4819-4831
[10]   Review of Visual Saliency Detection With Comprehensive Information [J].
Cong, Runmin ;
Lei, Jianjun ;
Fu, Huazhu ;
Cheng, Ming-Ming ;
Lin, Weisi ;
Huang, Qingming .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2019, 29 (10) :2941-2959