Minimax Optimal Estimator in a Stochastic Inverse Problem for Exponential Radon Transform

被引:3
作者
Abhishek, Anuj [1 ]
机构
[1] UNC Charlotte, Dept Math & Stat, 9201 Univ City Blvd, Charlotte, NC 28213 USA
来源
SANKHYA-SERIES A-MATHEMATICAL STATISTICS AND PROBABILITY | 2023年 / 85卷 / 01期
关键词
Exponential Radon Transform; Non-parametric estimation; APPROXIMATE INVERSE; FORMULA; TOMOGRAPHY;
D O I
10.1007/s13171-022-00285-4
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article, we consider the problem of inverting the exponential Radon transform of a function in the presence of noise. We propose a kernel estimator to estimate the true function. Such an estimator is closely related to filtered backprojection type inversion formulas in the noise-less setting. For the estimator proposed in this article, we then show that the convergence to the true function is at a minimax optimal rate.
引用
收藏
页码:980 / 998
页数:19
相关论文
共 32 条