Genome-wide analysis of FRF gene family and functional identification of HvFRF9 under drought stress in barley

被引:4
|
作者
He, Xiaoyan [1 ]
He, Yaru [1 ]
Dong, Yihuan [1 ]
Gao, Yu [1 ]
Sun, Xingcai [1 ]
Chen, Weiyue [1 ]
Xu, Xintong [1 ]
Su, Congjun [1 ]
Lv, Yifan [1 ]
Ren, Boyu [1 ]
Yin, Huayan [1 ]
Zeng, Jianbin [1 ]
Ma, Wujun [1 ]
Mu, Ping [1 ]
机构
[1] Qingdao Agr Univ, Coll Agron, Qingdao, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
drought stress; barley (Hordeum vulgare L.); HvFRFs gene family; HvFRF9; functional identification; RED ELONGATED HYPOCOTYL3; ARABIDOPSIS FHY3; TRANSCRIPTIONAL REGULATION; LIGHT; RESPONSES; MECHANISMS; GROWTH; PHYTOCHROME; RESISTANCE; EXPRESSION;
D O I
10.3389/fpls.2024.1347842
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
FHY3 and its homologous protein FAR1 are the founding members of FRS family. They exhibited diverse and powerful physiological functions during evolution, and participated in the response to multiple abiotic stresses. FRF genes are considered to be truncated FRS family proteins. They competed with FRS for DNA binding sites to regulate gene expression. However, only few studies are available on FRF genes in plants participating in the regulation of abiotic stress. With wide adaptability and high stress-resistance, barley is an excellent candidate for the identification of stress-resistance-related genes. In this study, 22 HvFRFs were detected in barley using bioinformatic analysis from whole genome. According to evolution and conserved motif analysis, the 22 HvFRFs could be divided into subfamilies I and II. Most promoters of subfamily I members contained abscisic acid and methyl jasmonate response elements; however, a large number promoters of subfamily II contained gibberellin and salicylic acid response elements. HvFRF9, one of the members of subfamily II, exhibited a expression advantage in different tissues, and it was most significantly upregulated under drought stress. In-situ PCR revealed that HvFRF9 is mainly expressed in the root epidermal cells, as well as xylem and phloem of roots and leaves, indicating that HvFRF9 may be related to absorption and transportation of water and nutrients. The results of subcellular localization indicated that HvFRF9 was mainly expressed in the nuclei of tobacco epidermal cells and protoplast of arabidopsis. Further, transgenic arabidopsis plants with HvFRF9 overexpression were generated to verify the role of HvFRF9 in drought resistance. Under drought stress, leaf chlorosis and wilting, MDA and O2 - contents were significantly lower, meanwhile, fresh weight, root length, PRO content, and SOD, CAT and POD activities were significantly higher in HvFRF9-overexpressing arabidopsis plants than in wild-type plants. Therefore, overexpression of HvFRF9 could significantly enhance the drought resistance in arabidopsis. These results suggested that HvFRF9 may play a key role in drought resistance in barley by increasing the absorption and transportation of water and the activity of antioxidant enzymes. This study provided a theoretical basis for drought resistance in barley and provided new genes for drought resistance breeding.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Genome-wide identification of the SOD gene family and expression analysis under drought and salt stress in barley
    Zhang, Xian
    Zhang, Lantian
    Chen, Yuyu
    Wang, Siyi
    Fang, Yunxia
    Zhang, Xiaoqin
    Wu, Yuhuan
    Xue, Dawei
    PLANT GROWTH REGULATION, 2021, 94 (01) : 49 - 60
  • [2] Genome-wide identification of the SOD gene family and expression analysis under drought and salt stress in barley
    Xian Zhang
    Lantian Zhang
    Yuyu Chen
    Siyi Wang
    Yunxia Fang
    Xiaoqin Zhang
    Yuhuan Wu
    Dawei Xue
    Plant Growth Regulation, 2021, 94 : 49 - 60
  • [3] Genome-Wide Identification of the F-box Gene Family and Expression Analysis under Drought and Salt Stress in Barley
    Zhang, Lantian
    Wang, Siyi
    Chen, Yuyu
    Dong, Mengyuan
    Fang, Yunxia
    Zhang, Xian
    Tong, Tao
    Zhang, Ziling
    Zheng, Junjun
    Xue, Dawei
    Zhang, Xiaoqin
    PHYTON-INTERNATIONAL JOURNAL OF EXPERIMENTAL BOTANY, 2020, 89 (02): : 229 - 251
  • [4] Genome-Wide Identification of the HMA Gene Family and Expression Analysis under Cd Stress in Barley
    Zhang, Chiran
    Yang, Qianhui
    Zhang, Xiaoqin
    Zhang, Xian
    Yu, Tongyuan
    Wu, Yuhuan
    Fang, Yunxia
    Xue, Dawei
    PLANTS-BASEL, 2021, 10 (09):
  • [5] Genome-Wide Identification of WRKY Gene Family and Expression Analysis under Abiotic Stress in Barley
    Zheng, Junjun
    Zhang, Ziling
    Tong, Tao
    Fang, Yunxia
    Zhang, Xian
    Niu, Chunyu
    Li, Jia
    Wu, Yuhuan
    Xue, Dawei
    Zhang, Xiaoqin
    AGRONOMY-BASEL, 2021, 11 (03):
  • [6] Genome-Wide Identification of the SRS Gene Family in Poplar and Expression Analysis Under Drought Stress and Salt Stress
    Yin, Zhihui
    Li, Haixia
    Li, Jing
    Guo, Chengbo
    Li, Zhenghua
    Zhang, Haifeng
    Wang, Hongmei
    Siqin, Tuya
    Sun, Peilin
    Wang, Yanmin
    Bai, Hui
    FORESTS, 2025, 16 (02):
  • [7] Genome-wide identification and functional analysis of the TIFY gene family in response to drought in cotton
    Zhao, Ge
    Song, Yun
    Wang, Caixiang
    Butt, Hamama Islam
    Wang, Qianhua
    Zhang, Chaojun
    Yang, Zuoren
    Liu, Zhao
    Chen, Eryong
    Zhang, Xueyan
    Li, Fuguang
    MOLECULAR GENETICS AND GENOMICS, 2016, 291 (06) : 2173 - 2187
  • [8] Genome-wide identification and functional analysis of the TIFY gene family in response to drought in cotton
    Ge Zhao
    Yun Song
    Caixiang Wang
    Hamama Islam Butt
    Qianhua Wang
    Chaojun Zhang
    Zuoren Yang
    Zhao Liu
    Eryong Chen
    Xueyan Zhang
    Fuguang Li
    Molecular Genetics and Genomics, 2016, 291 : 2173 - 2187
  • [9] Genome-Wide Identification of ALDH Gene Family under Salt and Drought Stress in Phaseolus vulgaris
    Eren, Abdil Hakan
    PHYTON-INTERNATIONAL JOURNAL OF EXPERIMENTAL BOTANY, 2024,
  • [10] Genome-wide identification of the LRX gene family in Cucurbitaceae and expression analysis under salt and drought stress in cucumber
    Fan, Shanshan
    Yang, Songlin
    Shi, Kexin
    Yang, Lin
    An, Menghang
    Wang, Fang
    Qi, Yu
    Feng, Min
    Wang, Mingqi
    Geng, Peixiang
    Liu, Xingwang
    Ren, Huazhong
    VEGETABLE RESEARCH, 2024, 4