Comparing Machine Learning Algorithms for Medical Time-Series Data

被引:0
作者
Helmersson, Alex [1 ]
Hoti, Faton [1 ]
Levander, Sebastian [1 ]
Shereef, Aliasgar [1 ]
Svensson, Emil [1 ]
El-Merhi, Ali [2 ,3 ]
Vithal, Richard [2 ,3 ]
Liljencrantz, Jaquette [2 ,3 ]
Block, Linda [2 ,3 ]
Herges, Helena Odenstedt [2 ,3 ]
Staron, Miroslaw [1 ]
机构
[1] Chalmers Univ Gothenburg, Dept Comp Sci & Engn, Gothenburg, Sweden
[2] Univ Gothenburg, Sahlgrenska Acad, Inst Clin Sci, Gothenburg, Sweden
[3] Sahlgrens Univ Hosp, Dept Anesthesia & Intens Care, Gothenburg, Sweden
来源
PRODUCT-FOCUSED SOFTWARE PROCESS IMPROVEMENT, PROFES 2023, PT I | 2024年 / 14483卷
关键词
Machine learning; stroke; SimSAX; dynamic time warping;
D O I
10.1007/978-3-031-49266-2_14
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Medical software becomes increasingly advanced and more mission-critical. Machine learning is one of the methods which is used in medical software to tackle a diversity of patient data, problems with data quality and providing the ability to process increasingly large amounts of data from medical procedures. However, one of the challenges is the lack of comparisons of algorithms in-situ, during medical procedures. This paper explores the potential of performing real-time comparisons of algorithms for early stroke detection during carotid endarterectomy. SimSAX, DTW (dynamic time warping), and Pearson correlation were compared based on the real-time data against medical specialists in clinical evaluations. The analysis confirmed the general feasibility of the approach, though the algorithms were inadequate in extracting significant information from specific signals. Interviews with physicians revealed a positive outlook toward the system's potential, advocating for further investigation. Despite their limitations, the algorithms and the prototype application provides a promising foundation for future development of new methods for detecting stroke.
引用
收藏
页码:200 / 207
页数:8
相关论文
共 16 条
[1]   Cerebral ischemia detection using artificial intelligence (CIDAI)-A study protocol [J].
Block, Linda ;
El-Merhi, Ali ;
Liljencrantz, Jaquette ;
Naredi, Silvana ;
Staron, Miroslaw ;
Herges, Helena Odenstedt .
ACTA ANAESTHESIOLOGICA SCANDINAVICA, 2020, 64 (09) :1335-1342
[2]  
Camm AJ, 1996, CIRCULATION, V93, P1043
[3]  
Fagius J., 2006, Chapter 9 Cerebrovaskulara sjukdomar
[4]   World Stroke Organization (WSO): Global Stroke Fact Sheet 2022 [J].
Feigin, Valery L. ;
Brainin, Michael ;
Norrving, Bo ;
Martins, Sheila ;
Sacco, Ralph L. ;
Hacke, Werner ;
Fisher, Marc ;
Pandian, Jeyaraj ;
Lindsay, Patrice .
INTERNATIONAL JOURNAL OF STROKE, 2022, 17 (01) :18-29
[5]   Quantitative EEG for the detection of brain ischemia [J].
Foreman, Brandon ;
Claassen, Jan .
CRITICAL CARE, 2012, 16 (02)
[6]   A review on time series data mining [J].
Fu, Tak-chung .
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2011, 24 (01) :164-181
[7]   Machine learning analysis of heart rate variability to detect delayed cerebral ischemia in subarachnoid hemorrhage [J].
Herges, Helena Odenstedt ;
Vithal, Richard ;
El-Merhi, Ali ;
Naredi, Silvana ;
Staron, Miroslaw ;
Block, Linda .
ACTA NEUROLOGICA SCANDINAVICA, 2022, 145 (02) :151-159
[8]  
Martini F., 2006, The Brain and Cranial Nerves
[9]   Dynamic Detection of Delayed Cerebral Ischemia A Study in 3 Centers [J].
Megjhani, Murad ;
Terilli, Kalijah ;
Weiss, Miriam ;
Savarraj, Jude ;
Chen, Li Hui ;
Alkhachroum, Ayham ;
Roh, David J. ;
Agarwal, Sachin ;
Connolly, E. Sander ;
Velazquez, Angela ;
Boehme, Amelia ;
Claassen, Jan ;
Choi, HuiMahn A. ;
Schubert, Gerrit A. ;
Park, Soojin .
STROKE, 2021, 52 (04) :1370-1379
[10]  
Moerman A, 2010, ACTA ANAESTH BELG, V61, P185