A binary Darboux transformation for multi-component nonlinear Schrödinger equations and dark vector soliton solutions

被引:5
作者
Ye, Rusuo [1 ]
Zhang, Yi [1 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Peoples R China
基金
中国国家自然科学基金;
关键词
WAVES;
D O I
10.1063/5.0178235
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
By taking the plane wave potentials as the seed solutions, we harness a binary Darboux transformation to generate dark vector soliton solutions for multi-component nonlinear Schrodinger equations. We introduce a generalized Darboux matrix such that the eigenvalues could equal the adjoint eigenvalues. The method which is purely algebraic could be useful and convenient, particularly in the construction of dark soliton solutions of integrable systems.
引用
收藏
页数:7
相关论文
共 44 条
  • [1] Ablowitz M.J., 1991, SOLITONS NONLINEAR E
  • [2] BENNEY DJ, 1969, STUD APPL MATH, V48, P377
  • [3] INVERSE SCATTERING TRANSFORM FOR THE DEFOCUSING MANAKOV SYSTEM WITH NONZERO BOUNDARY CONDITIONS
    Biondini, Gino
    Kraus, Daniel
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2015, 47 (01) : 706 - 757
  • [4] AN ALTERNATIVE EXPLICIT CONSTRUCTION OF N-SOLITON SOLUTIONS IN 1+1 DIMENSIONS
    CHAU, LL
    SHAW, JC
    YEN, HC
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (07) : 1737 - 1743
  • [5] Wronskian solutions and Pfaffianization for a (3+1)-dimensional generalized variable-coefficient Kadomtsev-Petviashvili equation in a fluid or plasma
    Cheng, Chong-Dong
    Tian, Bo
    Zhou, Tian-Yu
    Shen, Yuan
    [J]. PHYSICS OF FLUIDS, 2023, 35 (03)
  • [6] Pfaffian, breather, and hybrid solutions for a (2+1)-dimensional generalized nonlinear system in fluid mechanics and plasma physics
    Cheng, Chong-Dong
    Tian, Bo
    Ma, Yong-Xin
    Zhou, Tian-Yu
    Shen, Yuan
    [J]. PHYSICS OF FLUIDS, 2022, 34 (11)
  • [7] Multicomponent integrable wave equations: I. Darboux-dressing transformation
    Degasperis, A.
    Lombardo, S.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (05) : 961 - 977
  • [8] Multicomponent integrable wave equations: II. Soliton solutions
    Degasperis, A.
    Lombardo, S.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (38)
  • [9] Vector localized and periodic waves for the matrix Hirota equation with sign-alternating nonlinearity via the binary Darboux transformation
    Du, Zhong
    Zhao, Xue-Hui
    [J]. PHYSICS OF FLUIDS, 2023, 35 (07)
  • [10] Mixed localized waves and their dynamics for a matrix Lakshmanan-Porsezian-Daniel equation
    Du, Zhong
    Xie, Xi-Yang
    Wu, Xiao-Yu
    Zhao, Xue-Hui
    [J]. PHYSICS OF FLUIDS, 2022, 34 (12)