Exploring the hydride-slip interaction in zirconium alloys

被引:13
|
作者
Liu, Yang [1 ]
Thomas, Rhys [2 ]
Hardie, Chris D. [3 ]
Frankel, Philipp [2 ]
Dunne, Fionn P. E. [1 ]
机构
[1] Imperial Coll London, Dept Mat, London SW7 2BY, England
[2] Univ Manchester, Dept Mat, Manchester M13 9PL, England
[3] UK Atom Energy Author, Culham Ctr Fus Energy, Abingdon OX14 3DB, Oxon, England
基金
英国工程与自然科学研究理事会;
关键词
Crystal plasticity; HRDIC; EBSD; Hydrides; Zirconium alloys; Slip transfer; Dislocation stored energy; CONSTRAINED SURFACE MICROSTRUCTURE; FATIGUE-CRACK NUCLEATION; STRESS-STRAIN FIELDS; DELTA-HYDRIDE; MECHANICAL-PROPERTIES; STORED ENERGY; CRYSTAL PLASTICITY; HYDROGEN DIFFUSION; COOLING RATE; GRAIN-SIZE;
D O I
10.1016/j.actamat.2023.119388
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Hydrogen pick-up and hydride precipitation can lead to embrittlement and fracture strength reduction of nuclear fuel cladding tubes made of Zircaloy. Plastic deformation of hydride packets and its interaction with local plasticity in the zirconium matrix is a key linkage of microstructure feature to structural integrity of hydrided polycrystalline bulk Zircaloy. This work focuses on explicit representation of hydride packets from high spatial resolution electron backscatter diffraction onto a crystal plasticity finite element model for capturing and understanding slip localisation near hydride-matrix phase boundaries, based on the extracted material property of hydrides. The mechanisms behind slip evolution including slip nucleation, slip transfer, and slip inhibition are studied by combined high-resolution digital image correlation and crystal plasticity results. Through assessing various slip transfer parameters, new slip transfer criterion is proposed for alpha/delta phase boundaries. Prior to slip transfer criterion, local micromechanical quantities, specifically shear stress and stored energy density, are necessary to drive and provide pathway for subsequent slip transfer at alpha/delta phase boundaries.
引用
收藏
页数:26
相关论文
共 50 条
  • [1] Hydride Phases and Hydride Orientation in Zirconium Alloys
    Zeng Wen
    Luan Bai-feng
    Liu Na
    CAILIAO GONGCHENG-JOURNAL OF MATERIALS ENGINEERING, 2018, 46 (06): : 11 - 18
  • [2] Hydride Formation in Zirconium Alloys
    Motta, Arthur T.
    Chen, Long-Qing
    JOM, 2012, 64 (12) : 1403 - 1408
  • [3] Hydride Formation in Zirconium Alloys
    Arthur T. Motta
    Long-Qing Chen
    JOM, 2012, 64 : 1403 - 1408
  • [4] HYDRIDE CRACKING IN ZIRCONIUM ALLOYS
    SIMPSON, CJ
    ENGINEERING FRACTURE MECHANICS, 1979, 11 (02) : 464 - 464
  • [5] STRESS ORIENTATION OF HYDRIDE IN ZIRCONIUM ALLOYS
    ELLS, CE
    JOURNAL OF NUCLEAR MATERIALS, 1970, 35 (03) : 306 - &
  • [6] A review on hydride precipitation in zirconium alloys
    Bair, Jacob
    Zaeem, Mohsen Asle
    Tonks, Michael
    JOURNAL OF NUCLEAR MATERIALS, 2015, 466 : 12 - 20
  • [7] MINIMIZING HYDRIDE CRACKING IN ZIRCONIUM ALLOYS
    COLEMAN, CE
    CHEADLE, BA
    AMBLER, JFR
    LICHTENBERGER, PC
    EADIE, RL
    CANADIAN METALLURGICAL QUARTERLY, 1985, 24 (03) : 245 - 250
  • [8] HYDRIDE PRECIPITATES IN ZIRCONIUM ALLOYS (A REVIEW)
    ELLS, CE
    JOURNAL OF NUCLEAR MATERIALS, 1968, 28 (02) : 129 - &
  • [9] Intergranular δ-hydride nucleation and orientation in zirconium alloys
    Qin, W.
    Kumar, N. A. P. Kiran
    Szpunar, J. A.
    Kozinski, J.
    ACTA MATERIALIA, 2011, 59 (18) : 7010 - 7021
  • [10] MINIMIZING THE EFFECTS OF HYDRIDE CRACKING IN ZIRCONIUM ALLOYS
    COLEMAN, CE
    CHEADLE, BA
    AMBLER, JFR
    LICHTENBERGER, PC
    EADIE, RL
    CIM BULLETIN, 1984, 77 (866): : 57 - 57