The effect of Toll-like receptor agonists on the immunogenicity of MVA-SARS-2-S vaccine after intranasal administration in mice

被引:3
作者
Do, Kim Thi Hoang [1 ]
Willenzon, Stefanie [1 ]
Ristenpart, Jasmin [1 ]
Janssen, Anika [1 ]
Volz, Asisa [2 ,3 ]
Sutter, Gerd [3 ,4 ]
Foerster, Reinhold [1 ,5 ,6 ]
Bosnjak, Berislav [1 ,5 ]
机构
[1] Hannover Med Sch, Inst Immunol, Hannover, Germany
[2] Univ Vet Med Hannover, Inst Virol, Hannover, Germany
[3] German Ctr Infect Res DZIF, Munich, Germany
[4] Ludwig Maximiliam Univ LMU Munich, Dept Vet Sci, Div Virol, Munich, Germany
[5] Hannover Med Sch, Cluster Excellence RESIST EXC 2155, Hannover, Germany
[6] German Ctr Infect Res DZIF, Hannover, Germany
来源
FRONTIERS IN CELLULAR AND INFECTION MICROBIOLOGY | 2023年 / 13卷
关键词
modified vaccinia virus Ankara (MVA); respiratory tract; severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2); Toll-like receptor (TLR) agonist; vaccination; IMMUNE-RESPONSES; INDUCTION; INFECTION; LIGANDS; MUCOSAL; PEPTIDE; IMMUNIZATION; SARS-COV-2; PROTECTS; ADJUVANT;
D O I
10.3389/fcimb.2023.1259822
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Background and aimsModified Vaccinia virus Ankara (MVA) represents a promising vaccine vector for respiratory administration to induce protective lung immunity including tertiary lymphoid structure, the bronchus-associated lymphoid tissue (BALT). However, MVA expressing the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Spike protein (MVA-SARS-2-S) required prime-boost administration to induce high titers of anti-Spike antibodies in serum and bronchoalveolar lavage (BAL). As the addition of adjuvants enables efficient tailoring of the immune responses even to live vaccines, we tested whether Toll-like receptor (TLR)-agonists affect immune responses induced by a single dose of intranasally applied MVA-SARS-2-S.MethodsWe intranasally immunized C57BL/6 mice with MVA-SARS-2-S vaccine in the presence of either TLR3 agonist polyinosinic polycytidylic acid [poly(I:C)], TLR4 agonist bacterial lipopolysaccharide (LPS) from Escherichia coli, or TLR9 agonist CpG oligodeoxynucleotide (CpG ODN) 1826. At different time-points after immunization, we analyzed induced immune responses using flow cytometry, immunofluorescent microscopy, and ELISA.ResultsTLR agonists had profound effects on MVA-SARS-2-S-induced immune responses. At day 1 post intranasal application, the TLR4 agonist significantly affected MVA-induced activation of dendritic cells (DCs) within the draining bronchial lymph nodes, increasing the ratio of CD11b+CD86+ to CD103+CD86+ DCs. Nevertheless, the number of Spike-specific CD8+ T cells within the lungs at day 12 after vaccination was increased in mice that received MVA-SARS-2-S co-administered with TLR3 but not TLR4 agonists. TLR9 agonist did neither significantly affect MVA-induced DC activation nor the induction of Spike-specific CD8+ T cells but reduced both number and size of bronchus-associated lymphoid tissue. Surprisingly, the addition of all TLR agonists failed to boost the levels of Spike-specific antibodies in serum and bronchoalveolar lavage.ConclusionsOur study indicates a potential role of TLR-agonists as a tool to modulate immune responses to live vector vaccines. Particularly TLR3 agonists hold a promise to potentiate MVA-induced cellular immune responses. On the other hand, additional research is necessary to identify optimal combinations of agonists that could enhance MVA-induced humoral responses.
引用
收藏
页数:15
相关论文
共 64 条
  • [11] A single intranasal or intramuscular immunization with chimpanzee adenovirus-vectored SARS-CoV-2 vaccine protects against pneumonia in hamsters
    Bricker, Traci L.
    Darling, Tamarand L.
    Hassan, Ahmed O.
    Harastani, Houda H.
    Soung, Allison
    Jiang, Xiaoping
    Dai, Ya-Nan
    Zhao, Haiyan
    Adams, Lucas J.
    Holtzman, Michael J.
    Bailey, Adam L.
    Case, James Brett
    Fremont, Daved H.
    Klein, Robyn
    Diamond, Michael S.
    Boon, Adrianus C. M.
    [J]. CELL REPORTS, 2021, 36 (03):
  • [12] SARS-CoV-2 variant biology: immune escape, transmission and fitness
    Carabelli, Alessandro G.
    Peacock, Thomas P.
    Thorne, Lucy G.
    Harvey, William T.
    Hughes, Joseph
    Peacock, Sharon J.
    Barclay, Wendy S.
    de Silva, Thushan, I
    Towers, Greg J.
    Robertson, David L.
    [J]. NATURE REVIEWS MICROBIOLOGY, 2023, 21 (03) : 162 - 177
  • [13] Human dendritic cell subsets: an update
    Collin, Matthew
    Bigley, Venetia
    [J]. IMMUNOLOGY, 2018, 154 (01) : 3 - 20
  • [14] Intratumoral delivery of inactivated modified vaccinia virus Ankara (iMVA) induces systemic antitumor immunity via STING and Batf3-dependent dendritic cells
    Dai, Peihong
    Wang, Weiyi
    Yang, Ning
    Serna-Tamayo, Cristian
    Ricca, Jacob M.
    Zamarin, Dmitriy
    Shuman, Stewart
    Merghoub, Taha
    Wolchok, Jedd D.
    Deng, Liang
    [J]. SCIENCE IMMUNOLOGY, 2017, 2 (11)
  • [15] Modified Vaccinia Virus Ankara Triggers Type I IFN Production in Murine Conventional Dendritic Cells via a cGAS/STING-Mediated Cytosolic DNA-Sensing Pathway
    Dai, Peihong
    Wang, Weiyi
    Cao, Hua
    Avogadri, Francesca
    Dai, Lianpan
    Drexler, Ingo
    Joyce, Johanna A.
    Li, Xiao-Dong
    Chen, Zhijian
    Merghoub, Taha
    Shuman, Stewart
    Deng, Liang
    [J]. PLOS PATHOGENS, 2014, 10 (04)
  • [16] Single-cell analysis reveals divergent responses of human dendritic cells to the MVA vaccine
    Doring, Marius
    De Azevedo, Kevin
    Blanco-Rodriguez, Guillermo
    Nadalin, Francesca
    Satoh, Takeshi
    Gentili, Matteo
    Lahaye, Xavier
    De Silva, Nilushi S.
    Conrad, Cecile
    Jouve, Mabel
    Centlivre, Mireille
    Levy, Yves
    Manel, Nicolas
    [J]. SCIENCE SIGNALING, 2021, 14 (697)
  • [17] Use of defined TLR ligands as adjuvants within human vaccines
    Duthie, Malcolm S.
    Windish, Hillarie Plessner
    Fox, Christopher B.
    Reed, Steven G.
    [J]. IMMUNOLOGICAL REVIEWS, 2011, 239 : 178 - 196
  • [18] Intravenous Injection of MVA Virus Targets CD8+ Lymphocytes to Tumors to Control Tumor Growth upon Combinatorial Treatment with a TLR9 Agonist
    Fend, Laetitia
    Gatard-Scheikl, Tanja
    Kintz, Jacqueline
    Gantzer, Murielle
    Schaedler, Emmanuelle
    Rittner, Karola
    Cochin, Sandrine
    Fournel, Sylvie
    Preville, Xavier
    [J]. CANCER IMMUNOLOGY RESEARCH, 2014, 2 (12) : 1163 - 1174
  • [19] An adenovirus-vectored COVID-19 vaccine confers protection from SARS-COV-2 challenge in rhesus macaques
    Feng, Liqiang
    Wang, Qian
    Shan, Chao
    Yang, Chenchen
    Feng, Ying
    Wu, Jia
    Liu, Xiaolin
    Zhou, Yiwu
    Jiang, Rendi
    Hu, Peiyu
    Liu, Xinglong
    Zhang, Fan
    Li, Pingchao
    Niu, Xuefeng
    Liu, Yichu
    Zheng, Xuehua
    Luo, Jia
    Sun, Jing
    Gu, Yingying
    Liu, Bo
    Xu, Yongcun
    Li, Chufang
    Pan, Weiqi
    Zhao, Jincun
    Ke, Changwen
    Chen, Xinwen
    Xu, Tao
    Zhong, Nanshan
    Guan, Suhua
    Yuan, Zhiming
    Chen, Ling
    [J]. NATURE COMMUNICATIONS, 2020, 11 (01)
  • [20] Manifold Roles of CCR7 and Its Ligands in the Induction and Maintenance of Bronchus-Associated Lymphoid Tissue
    Fleige, Henrike
    Bosnjak, Berislav
    Permanyer, Marc
    Ristenpart, Jasmin
    Bubke, Anja
    Willenzon, Stefanie
    Sutter, Gerd
    Luther, Sanjiv A.
    Foerster, Reinhold
    [J]. CELL REPORTS, 2018, 23 (03): : 783 - 795