Longitudinal assessment of bleomycin-induced pulmonary fibrosis by evaluating TGF-β1/Smad2, Nrf2 signaling and metabolomic analysis in mice

被引:5
作者
Washimkar, Kaveri R. [1 ,3 ]
Tomar, Manendra Singh [4 ]
Kulkarni, Chirag [2 ,3 ]
Verma, Shobhit [1 ,3 ]
Shrivastava, Ashutosh [4 ]
Chattopadhyay, Naibedya [2 ,3 ]
Mugale, Madhav Nilakanth [1 ,3 ,5 ]
机构
[1] CSIR Cent Drug Res Inst CSIR CDRI, Div Toxicol & Expt Med, Lucknow 226031, India
[2] CSIR Cent Drug Res Inst CSIR CDRI, Div Endocrinol, Lucknow 226031, India
[3] Acad Sci & Innovat Res AcSIR, Ghaziabad 201002, India
[4] King Georges Med Univ, Fac Med, Ctr Adv Res, Lucknow 226003, India
[5] CSIR Cent Drug Res Inst, Lucknow 226031, Uttar Pradesh, India
关键词
Bleomycin; Metabolomics; Nrf2; Pulmonary fibrosis; TGF-ss1/Smad signaling; INDUCED LUNG FIBROSIS; OXIDATIVE STRESS; INDUCTION; INJURY; MODEL;
D O I
10.1016/j.lfs.2023.122064
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Introduction: Pulmonary fibrosis (PF) is characterized by an increase in collagen synthesis and deposition of extracellular matrix. Several factors, including transforming growth factor-ss1 (TGF-ss1), mothers against decapentaplegic homolog family proteins (Smad), and alpha-smooth muscle actin (a-SMA) trigger extracellular matrix (ECM) accumulation, fibroblast to myofibroblasts conversion, and epithelial-to-mesenchymal-transition (EMT) leading to PF. However, the role of cellular defense mechanisms such as the role of nuclear factor erythroid 2-related factor 2 (Nrf2) signaling during the onset and progression of PF is not understood completely.Aim: The present study aims to analyze the involvement of TGF-ss1/Smad signaling, and Nrf2 in the EMT and metabolic alterations that promote fibrosis in a time-dependent manner using bleomycin (BLM)-induced PF model in C57BL/6 mice.Key findings: Histopathological studies revealed loss of lung architecture and increased collagen deposition in BLM-exposed mice. BLM upregulated TGF-ss1/Smad signaling and a-SMA at all time-points. The gradual increase in the accumulation of a-SMA and collagen implied the progression of PF. BLM exposure raises Nrf2 throughout each specified time-point, which suggests that Nrf2 activation might be responsible for TGF-ss1-induced EMT and the development of PF. Further, metabolomic studies linked the development of PF to alterations in metabolic pathways. The pentose phosphate pathway (PPP) was consistently enriched across all the time-points. Additionally, alterations in 22 commonly enriched pathways, associated with fatty acid (FA) and amino acid metabolism were observed in 30-and 60-days.Significance: This study elucidates the association of TGF-ss1/Smad and Nrf2 signaling in the EMT and metabolic alterations associated with the etiology and progression of PF.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] S-allylmercapto-N-acetylcysteine ameliorates pulmonary fibrosis in mice via Nrf2 pathway activation and NF-?B, TGF-?1/Smad2/3 pathway suppression
    Zhang, Qinxiu
    Liu, Ying
    Niu, Decao
    Zhao, Xin
    Li, Genjv
    Qu, Ying
    Zhao, Zhongxi
    BIOMEDICINE & PHARMACOTHERAPY, 2023, 157
  • [22] Pirfenidone attenuates bleomycin-induced pulmonary fibrosis in mice by regulating Nrf2/Bach1 equilibrium
    Yuan Liu
    Fuai Lu
    Lirong Kang
    Zhihua Wang
    Yongfu Wang
    BMC Pulmonary Medicine, 17
  • [23] Deficiency of HtrA3 Attenuates Bleomycin-Induced Pulmonary Fibrosis Via TGF-β1/Smad Signaling Pathway
    Li, Guirong
    Shen, Chenyou
    Wei, Dong
    Yang, Xusheng
    Jiang, Cheng
    Yang, Xiucheng
    Mao, Wenjun
    Zou, Jian
    Tan, Jianxin
    Chen, Jingyu
    LUNG, 2023, 201 (02) : 235 - 242
  • [24] Synergistic protection of Schizandrin B and Glycyrrhizic acid against bleomycin-induced pulmonary fibrosis by inhibiting TGF-β1/Smad2 pathways and overexpression of NOX4
    Zhang, Di
    Liu, Bin
    Cao, Bo
    Wei, Fei
    Yu, Xin
    Li, Guo-feng
    Chen, Hong
    Wei, Lu-qing
    Wang, Pei-lan
    INTERNATIONAL IMMUNOPHARMACOLOGY, 2017, 48 : 67 - 75
  • [25] Simiao pill attenuates collagen-induced arthritis and bleomycin-induced pulmonary fibrosis in mice by suppressing the JAK2/STAT3 and TGF-β/Smad2/3 signalling pathway
    Ba, Xin
    Wang, Hui
    Huang, Yao
    Yan, JiaHui
    Han, Liang
    Lin, WeiJi
    Shen, Pan
    Huang, Ying
    Yang, SiSi
    Qin, Kai
    Tu, ShengHao
    Chen, Zhe
    JOURNAL OF ETHNOPHARMACOLOGY, 2023, 309
  • [26] Amitriptyline attenuates bleomycin-induced pulmonary fibrosis: modulation of the expression of NF-κβ iNOS, and Nrf2
    Zaafan, Mai A.
    Haridy, Ahmed R.
    Abdelhamid, Amr M.
    NAUNYN-SCHMIEDEBERGS ARCHIVES OF PHARMACOLOGY, 2019, 392 (03) : 279 - 286
  • [27] Deficiency of HtrA3 Attenuates Bleomycin-Induced Pulmonary Fibrosis Via TGF-β1/Smad Signaling Pathway
    Guirong Li
    Chenyou Shen
    Dong Wei
    Xusheng Yang
    Cheng Jiang
    Xiucheng Yang
    Wenjun Mao
    Jian Zou
    Jianxin Tan
    Jingyu Chen
    Lung, 2023, 201 : 235 - 242
  • [28] 2-Methoxyestradiol ameliorates paraquat-induced pulmonary fibrosis by inhibiting the TGF-β1/Smad2/3 signaling pathway
    Hou, Linlin
    Yang, Fang
    Zhang, Yan
    Li, Yi
    Yan, Hongyi
    Meng, Cuicui
    Du, Yuqi
    Zhu, Huanzhou
    Yuan, Ding
    Gao, Yanxia
    PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY, 2023, 197
  • [29] Empagliflozin Ameliorates Bleomycin-Induced Pulmonary Fibrosis in Rats by Modulating Sesn2/AMPK/Nrf2 Signaling and Targeting Ferroptosis and Autophagy
    El-Horany, Hemat El-Sayed
    Atef, Marwa Mohamed
    Abdel Ghafar, Muhammad Tarek
    Fouda, Mohamed. H.
    Nasef, Nahla Anas
    Hegab, Islam Ibrahim
    Helal, Duaa S.
    Elseady, Walaa
    Hafez, Yasser Mostafa
    Hagag, Rasha Youssef
    Seleem, Monira Abdelmoaty
    Saleh, Mai Mahmoud
    Radwan, Doaa A.
    Abd El-Lateef, Amal Ezzat
    Abd-Ellatif, Rania Nagi
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (11)
  • [30] Zanubrutinib attenuates bleomycin-induced pulmonary fibrosis by inhibiting the TGF-β1 signaling pathway
    Chen, Shanshan
    Wei, Yuli
    Li, Shimeng
    Miao, Yang
    Gu, Jinying
    Cui, Yunyao
    Liu, Zhichao
    Liang, Jingjing
    Wei, Luqing
    Li, Xiaohe
    Zhou, Honggang
    Yang, Cheng
    INTERNATIONAL IMMUNOPHARMACOLOGY, 2022, 113