Structure-guided AAV capsid evolution strategies for enhanced CNS gene delivery

被引:11
作者
Gonzalez, Trevor J. [1 ]
Mitchell-Dick, Aaron [2 ]
Blondel, Leo O. [2 ]
Fanous, Marco M. [2 ]
Hull, Joshua A. [2 ]
Oh, Daniel K. [2 ]
Moller-Tank, Sven [3 ]
Rivera, Ruth M. Castellanos [3 ]
Piedrahita, Jorge A. [4 ]
Asokan, Aravind [1 ,2 ,5 ]
机构
[1] Duke Univ, Sch Med, Dept Mol Genet & Microbiol, Durham, NC 27708 USA
[2] Duke Univ, Sch Med, Dept Surg, Durham, NC 27708 USA
[3] Univ North Carolina Chapel Hill, Gene Therapy Ctr, Chapel Hill, NC USA
[4] North Carolina State Univ, Coll Vet Med, Raleigh, NC USA
[5] Duke Univ, Dept Biomed Engn, Durham, NC 27708 USA
关键词
ADENOASSOCIATED VIRAL CAPSIDS; MOUSE ADENOVIRUS TYPE-1; DIRECTED EVOLUTION; RECEPTOR FOOTPRINT; VECTORS; VARIANTS; THERAPY; REVEALS; BINDING; ANTIBODIES;
D O I
10.1038/s41596-023-00875-y
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Over the past 5 years, our laboratory has systematically developed a structure-guided library approach to evolve new adeno-associated virus (AAV) capsids with altered tissue tropism, higher transduction efficiency and the ability to evade pre-existing humoral immunity. Here, we provide a detailed protocol describing two distinct evolution strategies using structurally divergent AAV serotypes as templates, exemplified by improving CNS gene transfer efficiency in vivo. We outline four major components of our strategy: (i) structure-guided design of AAV capsid libraries, (ii) AAV library production, (iii) library cycling in single versus multiple animal models, followed by (iv) evaluation of lead AAV vector candidates in vivo. The protocol spans similar to 95 d, excluding gene expression analysis in vivo, and can vary depending on user experience, resources and experimental design. A distinguishing attribute of the current protocol is the focus on providing biomedical researchers with 3D structural information to guide evolution of precise 'hotspots' on AAV capsids. Furthermore, the protocol outlines two distinct methods for AAV library evolution consisting of adenovirus-enabled infectious cycling in a single species and noninfectious cycling in a cross-species manner. Notably, our workflow can be seamlessly merged with other RNA transcript-based library strategies and tailored for tissue-specific capsid selection. Overall, the procedures outlined herein can be adapted to expand the AAV vector toolkit for genetic manipulation of animal models and development of human gene therapies.
引用
收藏
页码:3413 / +
页数:50
相关论文
共 91 条
[1]   Identification and Mutagenesis of the Adeno-Associated Virus 5 Sialic Acid Binding Region [J].
Afione, Sandra ;
DiMattia, Michael A. ;
Halder, Sujata ;
Di Pasquale, Giovanni ;
Agbandje-McKenna, Mavis ;
Chiorini, John A. .
JOURNAL OF VIROLOGY, 2015, 89 (03) :1660-1672
[2]   Mapping the Structural Determinants Required for AAVrh. 10 Transport across the Blood-Brain Barrier [J].
Albright, Blake H. ;
Storey, Claire M. ;
Murlidharan, Giridhar ;
Rivera, Ruth M. Castellanos ;
Berry, Garrett E. ;
Madigan, Victoria J. ;
Asokan, Aravind .
MOLECULAR THERAPY, 2018, 26 (02) :510-523
[3]   Matrix Metalloproteinase Activity in Infections by an Encephalitic Virus, Mouse Adenovirus Type 1 [J].
Ashley, Shanna L. ;
Pretto, Carla D. ;
Stier, Matthew T. ;
Kadiyala, Padma ;
Castro-Jorge, Luiza ;
Hsu, Tien-Huei ;
Doherty, Robert ;
Carnahan, Kelly E. ;
Castro, Maria G. ;
Lowenstein, Pedro R. ;
Spindler, Katherine R. .
JOURNAL OF VIROLOGY, 2017, 91 (06)
[4]   Reengineering a receptor footprint of adeno-associated virus enables selective and systemic gene transfer to muscle [J].
Asokan, Aravind ;
Conway, Julia C. ;
Phillips, Jana L. ;
Li, Chengwen ;
Hegge, Julia ;
Sinnott, Rebecca ;
Yadav, Swati ;
DiPrimio, Nina ;
Nam, Hyun-Joo ;
Agbandje-McKenna, Mavis ;
McPhee, Scott ;
Wolff, Jon ;
Samulski, R. Jude .
NATURE BIOTECHNOLOGY, 2010, 28 (01) :79-U107
[5]   Engineering the AAV capsid to evade immune responses [J].
Barnes, Christopher ;
Scheideler, Olivia ;
Schaffer, David .
CURRENT OPINION IN BIOTECHNOLOGY, 2019, 60 :99-103
[6]   Impact of capsid conformation and Rep-capsid interactions on adeno-associated virus type 2 genome packaging [J].
Bleker, S ;
Pawlita, M ;
Kleinschmidt, JA .
JOURNAL OF VIROLOGY, 2006, 80 (02) :810-820
[7]   Mutational analysis of narrow pores at the fivefold symmetry axes of adeno-associated virus type 2 capsids reveals a dual role in genome packaging and activation of phospholipase A2 activity [J].
Bleker, S ;
Sonntag, F ;
Kleinschmidt, JA .
JOURNAL OF VIROLOGY, 2005, 79 (04) :2528-2540
[8]   Deep diversification of an AAV capsid protein by machine learning [J].
Bryant, Drew H. ;
Bashir, Ali ;
Sinai, Sam ;
Jain, Nina K. ;
Ogden, Pierce J. ;
Riley, Patrick F. ;
Church, George M. ;
Colwell, Lucy J. ;
Kelsic, Eric D. .
NATURE BIOTECHNOLOGY, 2021, 39 (06) :691-696
[9]   Systemic AAV vectors for widespread and targeted gene delivery in rodents [J].
Challis, Rosemary C. ;
Kumar, Sripriya Ravindra ;
Chan, Ken Y. ;
Challis, Collin ;
Beadle, Keith ;
Jang, Min J. ;
Kim, Hyun Min ;
Rajendran, Pradeep S. ;
Tompkins, John D. ;
Shivkumar, Kalyanam ;
Deverman, Benjamin E. ;
Gradinaru, Viviana .
NATURE PROTOCOLS, 2019, 14 (02) :379-414
[10]   A systematic capsid evolution approach performed in vivo for the design of AAV vectors with tailored properties and tropism [J].
Davidsson, Marcus ;
Wang, Gang ;
Aldrin-Kirk, Patrick ;
Cardoso, Tiago ;
Nolbrant, Sara ;
Hartnor, Morgan ;
Mudannayake, Janitha ;
Parmar, Malin ;
Bjorklund, Tomas .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (52) :27053-27062