Synthesis of LiMn2O4 nanostructures with controlled morphology

被引:4
作者
Rada, Evilus [1 ]
Lima Jr, Enio [1 ]
Ruiz, Fabricio [2 ]
Moreno, M. Sergio [1 ]
机构
[1] Inst Nanociencia & NanoteOl INN, Ctr Atom Bariloche, CNEA, CONICET, RA-8400 San Carlos De Bariloche, Argentina
[2] Ctr Atom Bariloche, Gerencia Invest Aplicada, CNEA, CONICET, RA-8400 San Carlos De Bariloche, Argentina
来源
MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS | 2023年 / 292卷
关键词
Hollow nanostructures; Core; -shell; Thermal decomposition method; CATHODE MATERIALS; ANODE MATERIALS; LITHIUM; OXIDES;
D O I
10.1016/j.mseb.2023.116410
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Materials with nanosized dimensions exhibit different and interesting properties compared with their bulk counterpart, which is broadly applicable in several fields, including Li-ion batteries. These properties are intimately related to the morphological, compositional, and topographic features of the nanostructures, which are strongly dependent on the methods used to synthesize nanoparticles. Herein we present the synthesis of LiMn2O4 nanoparticles with controlled morphology by a thermal decomposition method of organometallic precursors followed by thermal treatment in air. The crystal structure, chemical composition, and morphology of the samples were analyzed by X-ray diffraction, transmission electron microscopy, electron diffraction, and electron energy-loss spectroscopy. By adjusting the reflux temperature and atmosphere we obtained nanoparticles and hollow nanostructures, while core-shell LiMn2O4/Li2O nanoparticles were obtained by adding a thermal decomposition stage.
引用
收藏
页数:10
相关论文
共 35 条
[1]  
Ahn C.C., 1983, EELS ATLAS
[2]  
Bashir S., 2018, NANOSTRUCTURED MAT N, V4, P517, DOI [DOI 10.1007/978-3-662-56364-9_18, DOI 10.1007/978-3-662-56364-918]
[3]  
Beke DL, 2004, J METASTAB NANOCRYST, V19, P107, DOI 10.4028/www.scientific.net/JMNM.19.107
[4]   Isothermal diagrams of the Li2O-MnO-MnO2 system [J].
Buzanov, G. A. ;
Nipan, G. D. ;
Zhizhin, K. Yu. ;
Kuznetsov, N. T. .
DOKLADY CHEMISTRY, 2015, 465 :268-271
[5]   Vacancy coalescence during oxidation of iron nanoparticles [J].
Cabot, Andreu ;
Puntes, Victor F. ;
Shevchenko, Elena ;
Yin, Yadong ;
Balcells, Lluis ;
Marcus, Matthew A. ;
Hughes, Steven M. ;
Alivisatos, A. Paul .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2007, 129 (34) :10358-+
[6]   Nanostructured ceramics: a review of their potential [J].
Cain, M ;
Morrell, R .
APPLIED ORGANOMETALLIC CHEMISTRY, 2001, 15 (05) :321-330
[7]   Advanced cathode materials for lithium-ion batteries using nanoarchitectonics [J].
Chen, Renjie ;
Zhao, Taolin ;
Zhang, Xiaoxiao ;
Li, Li ;
Wu, Feng .
NANOSCALE HORIZONS, 2016, 1 (06) :423-444
[8]   Single-Crystalline LiMn2O4 Nanotubes Synthesized Via Template-Engaged Reaction as Cathodes for High-Power Lithium Ion Batteries [J].
Ding, Yuan-Li ;
Xie, Jian ;
Cao, Gao-Shao ;
Zhu, Tie-Jun ;
Yu, Hong-Ming ;
Zhao, Xin-Bing .
ADVANCED FUNCTIONAL MATERIALS, 2011, 21 (02) :348-355
[9]   Controlled synthesis and chemical conversions of FeO nanoparticles [J].
Hou, Yanglong ;
Xu, Zhichuan ;
Sun, Shouheng .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2007, 46 (33) :6329-6332
[10]   Lithium Manganese Spinel Cathodes for Lithium-Ion Batteries [J].
Huang, Yimeng ;
Dong, Yanhao ;
Li, Sa ;
Lee, Jinhyuk ;
Wang, Chao ;
Zhu, Zhi ;
Xue, Weijiang ;
Li, Yao ;
Li, Ju .
ADVANCED ENERGY MATERIALS, 2021, 11 (02)