Machine Learning for Network Intrusion Detection-A Comparative Study

被引:9
|
作者
Al Lail, Mustafa [1 ]
Garcia, Alejandro [1 ]
Olivo, Saul [1 ]
机构
[1] Texas A&M Int Univ, Sch Engn, Laredo, TX 78041 USA
来源
FUTURE INTERNET | 2023年 / 15卷 / 07期
基金
美国国家科学基金会;
关键词
machine learning; network intrusion detection; cybersecurity; ALGORITHM;
D O I
10.3390/fi15070243
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Modern society has quickly evolved to utilize communication and data-sharing media with the advent of the internet and electronic technologies. However, these technologies have created new opportunities for attackers to gain access to confidential electronic resources. As a result, data breaches have significantly impacted our society in multiple ways. To mitigate this situation, researchers have developed multiple security countermeasure techniques known as Network Intrusion Detection Systems (NIDS). Despite these techniques, attackers have developed new strategies to gain unauthorized access to resources. In this work, we propose using machine learning (ML) to develop a NIDS system capable of detecting modern attack types with a very high detection rate. To this end, we implement and evaluate several ML algorithms and compare their effectiveness using a state-of-the-art dataset containing modern attack types. The results show that the random forest model outperforms other models, with a detection rate of modern network attacks of 97 percent. This study shows that not only is accurate prediction possible but also a high detection rate of attacks can be achieved. These results indicate that ML has the potential to create very effective NIDS systems.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Comparative Analysis of Machine Learning Models in Computer Network Intrusion Detection
    Osa, Edosa
    Oghenevbaire, Ogodo Efevberha
    2022 IEEE NIGERIA 4TH INTERNATIONAL CONFERENCE ON DISRUPTIVE TECHNOLOGIES FOR SUSTAINABLE DEVELOPMENT (IEEE NIGERCON), 2022, : 648 - 652
  • [2] Comparative research on network intrusion detection methods based on machine learning
    Zhang, Chunying
    Jia, Donghao
    Wang, Liya
    Wang, Wenjie
    Liu, Fengchun
    Yang, Aimin
    COMPUTERS & SECURITY, 2022, 121
  • [3] On the Evaluation of Sequential Machine Learning for Network Intrusion Detection
    Corsini, Andrea
    Yang, Shanchieh Jay
    Apruzzese, Giovanni
    ARES 2021: 16TH INTERNATIONAL CONFERENCE ON AVAILABILITY, RELIABILITY AND SECURITY, 2021,
  • [4] Deep Learning vs. Machine Learning for Intrusion Detection in Computer Networks: A Comparative Study
    Ali, Md Liakat
    Thakur, Kutub
    Schmeelk, Suzanna
    Debello, Joan
    Dragos, Denise
    APPLIED SCIENCES-BASEL, 2025, 15 (04):
  • [5] Machine Learning Based Network Intrusion Detection
    Lee, Chie-Hong
    Su, Yann-Yean
    Lin, Yu-Chun
    Lee, Shie-Jue
    2017 2ND IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND APPLICATIONS (ICCIA), 2017, : 79 - 83
  • [6] A Comparative Study of Using Boosting-Based Machine Learning Algorithms for IoT Network Intrusion Detection
    Mohamed Saied
    Shawkat Guirguis
    Magda Madbouly
    International Journal of Computational Intelligence Systems, 16
  • [7] A Comparative Study of Using Boosting-Based Machine Learning Algorithms for IoT Network Intrusion Detection
    Saied, Mohamed
    Guirguis, Shawkat
    Madbouly, Magda
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2023, 16 (01)
  • [8] Network intrusion detection system: A systematic study of machine learning and deep learning approaches
    Ahmad, Zeeshan
    Shahid Khan, Adnan
    Wai Shiang, Cheah
    Abdullah, Johari
    Ahmad, Farhan
    TRANSACTIONS ON EMERGING TELECOMMUNICATIONS TECHNOLOGIES, 2021, 32 (01)
  • [9] Network intrusion detection system using an optimized machine learning algorithm
    Alabdulatif, Abdulatif
    Rizvi, Syed Sajjad Hussain
    MEHRAN UNIVERSITY RESEARCH JOURNAL OF ENGINEERING AND TECHNOLOGY, 2023, 42 (01) : 153 - 164
  • [10] Intrusion Detection System: A Comparative Study of Machine Learning-Based IDS
    Singh, Amit
    Prakash, Jay
    Kumar, Gaurav
    Jain, Praphula Kumar
    Ambati, Loknath Sai
    JOURNAL OF DATABASE MANAGEMENT, 2024, 35 (01)