Breast Cancer Identification Study Using Improved VGG

被引:2
作者
Li, Yanzhang [1 ]
Deng, Kaiqi [1 ]
机构
[1] Hainan Univ, Dept Elect Sci & Technol, Haikou, Hainan, Peoples R China
来源
2023 8TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND BIG DATA ANALYTICS, ICCCBDA | 2023年
关键词
breast cancer; classification; VGG convolutional neural network; attentional mechanisms;
D O I
10.1109/ICCCBDA56900.2023.10154755
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A classification recognition algorithm based on improved VGG16 for breast cancer histopathology images is proposed to deal with the problem of binary recognition of breast cancer pathology images. Because some pathological images are very similar to each other, which leads to the problem of false detection. Therefore, attention mechanism is applied to increase the weight of effective feature map to make the training model get better effect and improve the accuracy of the algorithm. Verified by comparative experiment, the convergence speed and accuracy of the improved VGG16 model are higher than those of the original DenseNet and VGG16 models, reaching 98.41% of the recognition accuracy.
引用
收藏
页码:467 / 470
页数:4
相关论文
共 14 条
  • [1] Cimpoi M, 2015, PROC CVPR IEEE, P3828, DOI 10.1109/CVPR.2015.7299007
  • [2] Dibden Amanda, 2020, WORLDWIDE REV METAAN
  • [3] Psychological interventions for women with non-metastatic breast cancer
    Jassim, G. A.
    Doherty, S.
    Whitford, D. L.
    Khashan, A. S.
    [J]. COCHRANE DATABASE OF SYSTEMATIC REVIEWS, 2023, (01):
  • [4] Differences in Molecular Subtype Reference Standards Impact AI-based Breast Cancer Classification with Dynamic Contrast-enhanced MRI
    Ji, Yu
    Whitney, Heather M.
    Li, Hui
    Liu, Peifang
    Giger, Maryellen L.
    Zhang, Xuening
    [J]. RADIOLOGY, 2023, 307 (01)
  • [5] Parallel 'same' and 'valid' convolutional block and input-collaboration strategy for histopathological image classification
    Jiang, Huiyan
    Li, Siqi
    Li, Haoming
    [J]. APPLIED SOFT COMPUTING, 2022, 117
  • [6] A survey on deep learning in medical image analysis
    Litjens, Geert
    Kooi, Thijs
    Bejnordi, Babak Ehteshami
    Setio, Arnaud Arindra Adiyoso
    Ciompi, Francesco
    Ghafoorian, Mohsen
    van der Laak, Jeroen A. W. M.
    van Ginneken, Bram
    Sanchez, Clara I.
    [J]. MEDICAL IMAGE ANALYSIS, 2017, 42 : 60 - 88
  • [7] An update on the pathological classification of breast cancer
    Rakha, Emad A.
    Tse, Gary M.
    Quinn, Cecily M.
    [J]. HISTOPATHOLOGY, 2023, 82 (01) : 5 - 16
  • [8] Selvaraj S., 2023, Intelligent Communication Technologies and Virtual Mobile Networks: Proceedings of ICICV 2022. Lecture Notes on Data Engineering and Communications Technologies (131), P35, DOI 10.1007/978-981-19-1844-5_3
  • [9] Spanhol FA, 2016, IEEE IJCNN, P2560, DOI 10.1109/IJCNN.2016.7727519
  • [10] Multiple instance learning for histopathological breast cancer image classification
    Sudharshan, P. J.
    Petitjean, Caroline
    Spanhol, Fabio
    Oliveira, Luiz Eduardo
    Heutte, Laurent
    Honeine, Paul
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2019, 117 : 103 - 111