When can we reconstruct the ancestral state? Beyond Brownian motion

被引:2
作者
Vu, Nhat L. [1 ]
Nguyen, Thanh P. [2 ,3 ,4 ]
Nguyen, Binh T. [2 ,3 ,4 ]
Dinh, Vu [5 ]
Ho, Lam Si Tung [1 ]
机构
[1] Dalhousie Univ, Dept Math & Stat, Halifax, NS, Canada
[2] AISIA Res Lab, Ho Chi Minh City, Vietnam
[3] Univ Sci, Dept Comp Sci, Ho Chi Minh City, Vietnam
[4] Vietnam Natl Univ, Ho Chi Minh City, Vietnam
[5] Univ Delaware, Dept Math Sci, Newark, DE USA
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
Ancestral state reconstruction; Consistency; Big bang condition; Ornstein-Uhlenbeck; Brownian motion; Cox-Ingersoll-Ross; STABILIZING SELECTION; EVOLUTION; MODEL;
D O I
10.1007/s00285-023-01922-8
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Reconstructing the ancestral state of a group of species helps answer many important questions in evolutionary biology. Therefore, it is crucial to understand when we can estimate the ancestral state accurately. Previous works provide a necessary and sufficient condition, called the big bang condition, for the existence of an accurate reconstruction method under discrete trait evolution models and the Brownian motion model. In this paper, we extend this result to a wide range of continuous trait evolution models. In particular, we consider a general setting where continuous traits evolve along the tree according to stochastic processes that satisfy some regularity conditions. We verify these conditions for popular continuous trait evolution models including Ornstein-Uhlenbeck, reflected Brownian Motion, bounded Brownian Motion, and Cox-Ingersoll-Ross.
引用
收藏
页数:15
相关论文
共 25 条
[1]   ANALYSIS OF COMPARATIVE DATA WITH HIERARCHICAL AUTOCORRELATION [J].
Ane, Cecile .
ANNALS OF APPLIED STATISTICS, 2008, 2 (03) :1078-1102
[2]   Phase transition on the convergence rate of parameter estimation under an Ornstein-Uhlenbeck diffusion on a tree [J].
Ane, Cecile ;
Ho, Lam Si Tung ;
Roch, Sebastien .
JOURNAL OF MATHEMATICAL BIOLOGY, 2017, 74 (1-2) :355-385
[3]   PHYLOGENETIC CONFIDENCE INTERVALS FOR THE OPTIMAL TRAIT VALUE [J].
Bartoszek, Krzysztof ;
Sagitov, Serik .
JOURNAL OF APPLIED PROBABILITY, 2015, 52 (04) :1115-1132
[4]  
Bastide P, 2021, ANN APPL STAT, V15
[5]   MODELING STABILIZING SELECTION: EXPANDING THE ORNSTEIN-UHLENBECK MODEL OF ADAPTIVE EVOLUTION [J].
Beaulieu, Jeremy M. ;
Jhwueng, Dwueng-Chwuan ;
Boettiger, Carl ;
O'Meara, Brian C. .
EVOLUTION, 2012, 66 (08) :2369-2383
[6]   Beyond Brownian Motion and the Ornstein-Uhlenbeck Process: Stochastic Diffusion Models for the Evolution of Quantitative Characters [J].
Blomberg, Simone P. ;
Rathnayake, Suren, I ;
Moreau, Cheyenne M. .
AMERICAN NATURALIST, 2020, 195 (02) :145-165
[7]   A General Model for Estimating Macroevolutionary Landscapes [J].
Boucher, Florian C. ;
Demery, Vincent ;
Conti, Elena ;
Harmon, Luke J. ;
Uyeda, Josef .
SYSTEMATIC BIOLOGY, 2018, 67 (02) :304-319
[8]   Inferring Bounded Evolution in Phenotypic Characters from Phylogenetic Comparative Data [J].
Boucher, Florian C. ;
Demery, Vincent .
SYSTEMATIC BIOLOGY, 2016, 65 (04) :651-661
[9]   Mapping the Origins and Expansion of the Indo-European Language Family [J].
Bouckaert, Remco ;
Lemey, Philippe ;
Dunn, Michael ;
Greenhill, Simon J. ;
Alekseyenko, Alexander V. ;
Drummond, Alexei J. ;
Gray, Russell D. ;
Suchard, Marc A. ;
Atkinson, Quentin D. .
SCIENCE, 2012, 337 (6097) :957-960
[10]   Necessary and sufficient conditions for consistent root reconstruction in Markov models on trees [J].
Fan, Wai-Tong ;
Roch, Sebastien .
ELECTRONIC JOURNAL OF PROBABILITY, 2018, 23