Stratospheric ozone, UV radiation, and climate interactions

被引:47
|
作者
Bernhard, G. H. [1 ]
Bais, A. F. [2 ]
Aucamp, P. J. [3 ]
Klekociuk, A. R. [4 ]
Liley, J. B. [5 ]
McKenzie, R. L. [5 ]
机构
[1] Biospher Inc, San Diego, CA 92110 USA
[2] Aristotle Univ Thessaloniki, Dept Phys, Lab Atmospher Phys, Thessaloniki, Greece
[3] Ptersa Environm Consultants, Pretoria, South Africa
[4] Australian Antarctic Div, Antarctic Climate Program, Kingston, Australia
[5] Natl Inst Water & Atmospher Res, Lauder, New Zealand
关键词
TOTAL COLUMN OZONE; ENERGETIC PARTICLE-PRECIPITATION; SPECTRAL ULTRAVIOLET IRRADIANCE; QUASI-BIENNIAL OSCILLATION; GROUND-BASED MEASUREMENTS; AEROSOL OPTICAL DEPTH; ANTARCTIC SEA-ICE; SOUTHERN-HEMISPHERE; MONTREAL PROTOCOL; SOLAR IRRADIANCE;
D O I
10.1007/s43630-023-00371-y
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
This assessment provides a comprehensive update of the effects of changes in stratospheric ozone and other factors (aerosols, surface reflectivity, solar activity, and climate) on the intensity of ultraviolet (UV) radiation at the Earth's surface. The assessment is performed in the context of the Montreal Protocol on Substances that Deplete the Ozone Layer and its Amendments and Adjustments. Changes in UV radiation at low-and mid-latitudes (0-60 degrees) during the last 25 years have generally been small (e.g., typically less than 4% per decade, increasing at some sites and decreasing at others) and were mostly driven by changes in cloud cover and atmospheric aerosol content, caused partly by climate change and partly by measures to control tropospheric pollution. Without the Montreal Protocol, erythemal (sunburning) UV irradiance at northern and southern latitudes of less than 50 degrees would have increased by 10-20% between 1996 and 2020. For southern latitudes exceeding 50 degrees, the UV Index (UVI) would have surged by between 25% (year-round at the southern tip of South America) and more than 100% (South Pole in spring). Variability of erythemal irradiance in Antarctica was very large during the last four years. In spring 2019, erythemal UV radiation was at the minimum of the historical (1991-2018) range at the South Pole, while near record-high values were observed in spring 2020, which were up to 80% above the historical mean. In the Arctic, some of the highest erythemal irradiances on record were measured in March and April 2020. For example in March 2020, the monthly average UVI over a site in the Canadian Arctic was up to 70% higher than the historical (2005-2019) average, often exceeding this mean by three standard deviations. Under the presumption that all countries will adhere to the Montreal Protocol in the future and that atmospheric aerosol concentrations remain constant, erythemal irradiance at mid-latitudes (30-60 degrees) is projected to decrease between 2015 and 2090 by 2-5% in the north and by 4-6% in the south due to recovering ozone. Changes projected for the tropics are = 3%. However, in industrial regions that are currently affected by air pollution, UV radiation will increase as measures to reduce air pollutants will gradually restore UV radiation intensities to those of a cleaner atmosphere. Since most substances controlled by the Montreal Protocol are also greenhouse gases, the phase-out of these substances may have avoided warming by 0.5-1.0 degrees C over mid-latitude regions of the continents, and by more than 1.0 degrees C in the Arctic; however, the uncertainty of these calculations is large. We also assess the effects of changes in stratospheric ozone on climate, focusing on the poleward shift of climate zones, and discuss the role of the small Antarctic ozone hole in 2019 on the devastating "Black Summer" fires in Australia. Additional topics include the assessment of advances in measuring and modeling of UV radiation; methods for determining personal UV exposure; the effect of solar radiation management (stratospheric aerosol injections) on UV radiation relevant for plants; and possible revisions to the vitamin D action spectrum, which describes the wavelength dependence of the synthesis of previtamin D3 in human skin upon exposure to UV radiation.
引用
收藏
页码:937 / 989
页数:53
相关论文
共 50 条
  • [31] The effect of ozone and aerosols on the surface erythemal UV radiation estimated from OMI measurements
    Joonsuk Lee
    Won Jun Choi
    Deok Rae Kim
    Seung-Yeon Kim
    Chang-Keun Song
    Jun Suk Hong
    Youdeog Hong
    Sukjo Lee
    Asia-Pacific Journal of Atmospheric Sciences, 2013, 49 : 271 - 278
  • [32] The Transient Response of the Southern Ocean to Stratospheric Ozone Depletion
    Seviour, William J. M.
    Gnanadesikan, Anand
    Waugh, Darryn W.
    JOURNAL OF CLIMATE, 2016, 29 (20) : 7383 - 7396
  • [33] The Impact of Stratospheric Ozone Recovery on Tropopause Height Trends
    Son, Seok-Woo
    Polvani, Lorenzo M.
    Waugh, Darryn W.
    Birner, Thomas
    Akiyoshi, Hideharu
    Garcia, Rolando R.
    Gettelman, Andrew
    Plummer, David A.
    Rozanov, Eugene
    JOURNAL OF CLIMATE, 2009, 22 (02) : 429 - 445
  • [34] Stratospheric temperature trends: impact of ozone variability and the QBO
    Dall'Amico, Mauro
    Gray, Lesley J.
    Rosenlof, Karen H.
    Scaife, Adam A.
    Shine, Keith P.
    Stott, Peter A.
    CLIMATE DYNAMICS, 2010, 34 (2-3) : 381 - 398
  • [35] Impact of Methane Emissions on Future Stratospheric Ozone Recovery
    Liu, Na
    Xie, Fei
    Xia, Yan
    Niu, Yingli
    Liu, Hongwei
    Xiang, Xinyuan
    Han, Yuanyuan
    ADVANCES IN ATMOSPHERIC SCIENCES, 2025, : 1463 - 1482
  • [36] A global picture of the seasonal persistence of stratospheric ozone anomalies
    Tegtmeier, S.
    Fioletov, V. E.
    Shepherd, T. G.
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2010, 115
  • [37] Variability of Stratospheric Reactive Nitrogen and Ozone Related to the QBO
    Park, M.
    Randel, W. J.
    Kinnison, D. E.
    Bourassa, A. E.
    Degenstein, D. A.
    Roth, C. Z.
    McLinden, C. A.
    Sioris, C. E.
    Livesey, N. J.
    Santee, M. L.
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2017, 122 (18) : 10103 - 10118
  • [38] Tropospheric ozone variations governed by changes in stratospheric circulation
    Neu, Jessica L.
    Flury, Thomas
    Manney, Gloria L.
    Santee, Michelle L.
    Livesey, Nathaniel J.
    Worden, John
    NATURE GEOSCIENCE, 2014, 7 (05) : 340 - 344
  • [39] Environmental effects of ozone depletion and its interactions with climate change: progress report, 2015
    Andrady, Anthony
    Aucamp, Pieter J.
    Austin, Amy T.
    Bais, Alkiviadis F.
    Ballare, Carlos L.
    Barnes, Paul W.
    Bernhard, Germar H.
    Bjoern, Lars Olof
    Bornman, Janet F.
    Erickson, David J.
    de Gruijl, Frank R.
    Haeder, Donat-P.
    Ilyas, Mohammad
    Longstreth, Janice
    Lucas, Robyn M.
    Madronich, Sasha
    McKenzie, Richard L.
    Neale, Rachel
    Norval, Mary
    Pandey, Krishna K.
    Paul, Nigel
    Redhwi, Halim Hamid
    Robinson, Sharon A.
    Rose, Kevin
    Shao, Min
    Sinha, Rajeshwar P.
    Solomon, Keith R.
    Sulzberger, Barbara
    Takizawa, Yukio
    Torikai, Ayako
    Tourpali, Kleareti
    Williamson, Craig E.
    Wilson, Stephen R.
    Waengberg, Sten-Ake
    Worrest, Robert C.
    Young, Antony R.
    Zepp, Richard G.
    PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES, 2016, 15 (02) : 141 - 174
  • [40] Impact of two low ozone events on surface solar UV radiation over the northeast of Spain
    Sola, Y.
    Lorente, J.
    INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2011, 31 (11) : 1724 - 1734