Parameters Identification and Numerical Simulation for a Fractional Model of Honeybee Population Dynamics

被引:4
作者
Georgiev, Slavi [1 ,2 ]
Vulkov, Lubin [2 ]
机构
[1] Bulgarian Acad Sci, Inst Math & Informat, Dept Informat Modeling, Sofia 1113, Bulgaria
[2] Univ Ruse, Fac Nat Sci & Educ, Dept Appl Math & Stat, Ruse 7004, Bulgaria
关键词
honeybee population dynamics; fractional derivative; parameter estimation; cost function minimization; CALCULUS; PART;
D O I
10.3390/fractalfract7040311
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In order to investigate the honeybee population dynamics, many differential equation models were proposed. Fractional derivatives incorporate the history of the honeybee population dynamics. We numerically study the inverse problem of parameter identification in models with Caputo and Caputo-Fabrizio differential operators. We use a gradient method of minimizing a quadratic cost functional. We analyze and compare results for the integer (classic) and fractional models. The present work also contains discussion on the efficiency of the numerical methods used. Computational tests with realistic data were performed and are discussed.
引用
收藏
页数:18
相关论文
共 34 条
  • [1] New discretization of Caputo-Fabrizio derivative
    Akman, Tugba
    Yildiz, Burak
    Baleanu, Dumitru
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (03) : 3307 - 3333
  • [2] A fractional dynamical model for honeybee colony population
    Akman Yildiz, Tugba
    [J]. INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2018, 11 (05)
  • [3] Atanasov A.Z., 2021, COMMUN COMPUT PHYS, V1341, P363, DOI 10.1007/978-3-030-68527-023
  • [4] Atanasov A.Z., 2021, MODELLING DEV INTELL, V1341, P349, DOI 10.1007/978-3-030-68527-0_22
  • [5] Atanasov A.Z., 2022, OPTIM ENG, V2522
  • [6] Reconstruction analysis of honeybee colony collapse disorder modeling
    Atanasov, Atanas Z.
    Georgiev, Slavi G.
    Vulkov, Lubin G.
    [J]. OPTIMIZATION AND ENGINEERING, 2021, 22 (04) : 2481 - 2503
  • [7] A Multicriteria Model for Optimal Location of Honey Bee Colonies in Regions without Overpopulation
    Atanasov, Atanas Z.
    Georgiev, Ivan R.
    [J]. APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS (AMEE20), 2021, 2333
  • [8] Baleanu D., 2017, Series on Complexity, Nonlinearity and Chaos
  • [9] A new study on the mathematical modelling of human liver with Caputo-Fabrizio fractional derivative
    Baleanu, Dumitru
    Jajarmi, Amin
    Mohammadi, Hakimeh
    Rezapour, Shahram
    [J]. CHAOS SOLITONS & FRACTALS, 2020, 134
  • [10] REVIEW: Towards a systems approach for understanding honeybee decline: a stocktaking and synthesis of existing models
    Becher, Matthias A.
    Osborne, Juliet L.
    Thorbek, Pernille
    Kennedy, Peter J.
    Grimm, Volker
    [J]. JOURNAL OF APPLIED ECOLOGY, 2013, 50 (04) : 868 - 880