A Three-Dimensional Real-Time Gait-Based Age Detection System Using Machine Learning

被引:0
作者
Azhar, Muhammad [1 ]
Ullah, Sehat [1 ]
Ullah, Khalil [2 ]
Shah, Habib [3 ]
Namoun, Abdallah [4 ]
Rahman, Khaliq Ur [5 ]
机构
[1] Univ Malakand, Dept Comp Sci & IT, Chakdara 18800, Pakistan
[2] Univ Malakand, Dept Software Engn, Chakdara 18800, Pakistan
[3] King Khalid Univ, Coll Comp Sci, Abha 62529, Saudi Arabia
[4] Islamic Univ Madinah, Fac Comp & Informat Syst, Madinah 42351, Saudi Arabia
[5] Abdul Wali Khan Univ, Dept Stat, Mardan 23200, Pakistan
来源
CMC-COMPUTERS MATERIALS & CONTINUA | 2023年 / 75卷 / 01期
关键词
Age estimation; gait biometrics; classical linear regression model; RECOGNITION; MODEL; FACE;
D O I
10.32604/cmc.2023.034605
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Human biometric analysis has gotten much attention due to its widespread use in different research areas, such as security, surveillance, health, human identification, and classification. Human gait is one of the key human traits that can identify and classify humans based on their age, gender, and ethnicity. Different approaches have been proposed for the estimation of human age based on gait so far. However, challenges are there, for which an efficient, low-cost technique or algorithm is needed. In this paper, we propose a three-dimensional real-time gait-based age detection system using a machine learning approach. The proposed system consists of training and testing phases. The proposed training phase consists of gait features extraction using the Microsoft Kinect (MS Kinect) controller, dataset generation based on joints' position, pre-processing of gait features, feature selection by calculating the Standard error and Standard deviation of the arithmetic mean and best model selection using R2 and adjusted R2 techniques. T-test and ANOVA techniques show that nine joints (right shoulder, right elbow, right hand, left knee, right knee, right ankle, left ankle, left, and right foot) are statistically significant at a 5% level of significance for age estimation. The proposed testing phase correctly predicts the age of a walking person using the results obtained from the training phase. The proposed approach is evaluated on the data that is experimentally recorded from the user in a real-time scenario. Fifty (50) volunteers of different ages participated in the experimental study. Using the limited features, the proposed method estimates the age with 98.0% accuracy on experimental images acquired in real-time via a classical general linear regression model.
引用
收藏
页码:165 / 182
页数:18
相关论文
共 50 条
  • [41] Real-time measurement on dynamic temperature variation of asphalt pavement using machine learning
    Wang, Xuefei
    Pan, Peng
    Li, Jiale
    MEASUREMENT, 2023, 207
  • [42] Spatiotemporal Anomaly Detection Using Deep Learning for Real-Time Video Surveillance
    Nawaratne, Rashmika
    Alahakoon, Damminda
    De Silva, Daswin
    Yu, Xinghuo
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2020, 16 (01) : 393 - 402
  • [43] Using machine learning for real-time estimates of snow water equivalent in the watersheds of Afghanistan
    Bair, Edward H.
    Calfa, Andre Abreu
    Rittger, Karl
    Dozier, Jeff
    CRYOSPHERE, 2018, 12 (05) : 1579 - 1594
  • [44] REAL-TIME TEMPERATURE PREDICTION OF A MOVING HEAT SOURCE PROBLEM USING MACHINE LEARNING
    Heydari, Mahtab
    Kung, Pei-Ching
    Tai, Bruce L.
    Tsou, Nien-Ti
    PROCEEDINGS OF ASME 2023 18TH INTERNATIONAL MANUFACTURING SCIENCE AND ENGINEERING CONFERENCE, MSEC2023, VOL 2, 2023,
  • [45] From sentence to emotion: a real-time three-dimensional graphics metaphor of emotions extracted from text
    Gobron, Stephane
    Ahn, Junghyun
    Paltoglou, Georgios
    Thelwall, Michael
    Thalmann, Daniel
    VISUAL COMPUTER, 2010, 26 (6-8) : 505 - 519
  • [46] A machine learning-based approach to predict the fatigue life of three-dimensional cracked specimens
    Zhang, Jianqiang
    Zhu, Jiacai
    Guo, Wei
    Guo, Wanlin
    INTERNATIONAL JOURNAL OF FATIGUE, 2022, 159
  • [47] Real-time fall detection on roads using transfer learning-based granulated Bi-LSTM
    Pramanik, Anima
    Sarker, Soumick
    Sarkar, Sobhan
    Pal, Sankar K.
    KNOWLEDGE-BASED SYSTEMS, 2025, 311
  • [48] A Real-Time Power Quality Disturbance Detection System Based On The Wavelet Transform
    Eristi, Belkis
    Yildirim, Ozal
    Eristi, Huseyin
    Demir, Yakup
    2016 51ST INTERNATIONAL UNIVERSITIES POWER ENGINEERING CONFERENCE (UPEC), 2016,
  • [49] Real-Time Concrete Damage Detection Using Deep Learning for High Rise Structures
    Kumar, Prashant
    Batchu, Supraja
    Swamy S., Narasimha
    Kota, Solomon Raju
    IEEE ACCESS, 2021, 9 : 112312 - 112331
  • [50] Real-Time Barge Detection Using Traffic Cameras and Deep Learning on Inland Waterways
    Agorku, Geoffery
    Hernandez, Sarah
    Falquez, Maria
    Poddar, Subhadipto
    Amankwah-Nkyi, Kwadwo
    TRANSPORTATION RESEARCH RECORD, 2024,