Nanoscaling and Heterojunction for Photocatalytic Hydrogen Evolution by Bimetallic Metal-Organic Frameworks

被引:25
|
作者
Tang, Liangming [1 ]
Lin, Qia-Chun [1 ]
Jiang, Zhixin [1 ]
Hu, Jieying [1 ]
Liu, Zhiqing [1 ]
Liao, Wei-Ming [1 ]
Zhou, Hua-Qun [1 ]
Chung, Lai-Hon [1 ,2 ]
Xu, Zhengtao [3 ]
Yu, Lin [1 ]
He, Jun [1 ]
机构
[1] Guangdong Univ Technol, Sch Chem Engn & Light Ind, Guangzhou 510006, Peoples R China
[2] Jinan Univ, Guangdong Prov Key Lab Funct Supramol Coordinat Ma, Guangzhou 510632, Peoples R China
[3] ASTAR, Inst Mat Res & Engn IMRE, 2 Fusionopolis Way, Singapore 138634, Singapore
基金
中国国家自然科学基金;
关键词
heterojunctions; hydrogen evolution; metal-organic frameworks; nanoscaling; synergizing bimetallics; CO2; REDUCTION; H-2; CATALYST; TIO2;
D O I
10.1002/adfm.202214450
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Using sunlight to manufacture hydrogen offers promising access to renewable clean energy. For this, low-cost photocatalyst with effective light absorption and charge transfer are crucial, as current top-performing systems often involve precious metals like Pd and Pt. An integrated organic-inorganic photocatalyst based on the cheap metals of iron and nickel are reported, wherein the metal ions form strong metal-sulfur bonds with the organic linker molecules (2,5-dimercapto-1,4-benzenedicarboxylic acid, H4DMBD) to generate 2D coordination sheets for promoting light absorption and charge transport. The 2D sheets are further modified through ionic metal-carboxylate moieties to allow for functional flexibility. Thus, high-surface-area thin nanosheets of this 2D material, with an optimized Fe/Ni ratio (0.25:1.75), and in heterojunction with CdS nanosheet, achieve a stable photocatalytic hydrogen evolution rate of 12.15 mu mol mg(-1) h(-1). This work synergizes coordination network design and nano-assembly as a versatile platform for catalyzing hydrogen production and other sustainable processes.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Progress in Application of Metal-organic Frameworks in Photocatalytic Reactions
    Wang L.
    Wang, Liping (wanglp_csu@163.com), 1600, Cailiao Daobaoshe/ Materials Review (31): : 51 - 62and84
  • [22] Merging molecular catalysts and metal-organic frameworks for photocatalytic fuel production
    Stanley, P. M.
    Haimerl, J.
    Shustova, N. B.
    Fischer, R. A.
    Warnan, J.
    NATURE CHEMISTRY, 2022, 14 (12) : 1342 - 1356
  • [23] A 2D NiFe Bimetallic Metal-Organic Frameworks for Efficient Oxygen Evolution Electrocatalysis
    Hao, Yongchao
    Liu, Qinglin
    Zhou, Ying
    Yuan, Zeqian
    Fan, Yanan
    Ke, Zhuofeng
    Su, Cheng-Yong
    Li, Guangqin
    ENERGY & ENVIRONMENTAL MATERIALS, 2019, 2 (01) : 18 - 21
  • [24] Cerium-cobalt bimetallic metal-organic frameworks with the mixed ligands for photocatalytic degradation of methylene blue
    Ma, Sumei
    Shi, Yunxia
    Xia, Xiaoxia
    Song, Qianqian
    Yang, Jing
    INORGANIC CHEMISTRY COMMUNICATIONS, 2023, 152
  • [25] Nickel/cobalt bimetallic phosphides derived metal-organic frameworks as bifunctional electrocatalyst for oxygen and hydrogen evolution reaction
    Shuai, Chao
    Mo, Zunli
    Niu, Xiaohui
    Zhao, Pan
    Dong, Qibing
    Chen, Ying
    Liu, Nijuan
    Guo, Ruibin
    JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 847
  • [26] Metal-organic frameworks for photocatalysis
    Li, Ying
    Xu, Hua
    Ouyang, Shuxin
    Ye, Jinhua
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (11) : 7563 - 7572
  • [27] Metal-Organic Frameworks for Photocatalysis
    Zhang, Teng
    Lin, Wenbin
    METAL-ORGANIC FRAMEWORKS FOR PHOTONICS APPLICATIONS, 2014, 157 : 89 - 104
  • [28] Hydrogen Storage in Metal-Organic Frameworks
    Yubiao Sun
    Li Wang
    Wael A. Amer
    Haojie Yu
    Jing Ji
    Liang Huang
    Jie Shan
    Rongbai Tong
    Journal of Inorganic and Organometallic Polymers and Materials, 2013, 23 : 270 - 285
  • [29] Hydrogen storage in metal-organic frameworks
    Hirscher, Michael
    Panella, Barbara
    SCRIPTA MATERIALIA, 2007, 56 (10) : 809 - 812
  • [30] Hydrogen Storage in Metal-Organic Frameworks
    Yaghi, Omar M.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2005, 61 : C69 - C69