Local existence for the d-dimensional magneto-micropolar equations with fractional dissipation in Besov spaces

被引:1
|
作者
Qiu, Hua [1 ]
Xiao, Cuntao [2 ]
Yao, Zheng-an [3 ]
机构
[1] South China Agr Univ, Dept Math, Guangzhou 510642, Peoples R China
[2] Guangdong Univ Technol, Sch Math & Stat, Guangzhou, Peoples R China
[3] Sun Yat Sen Univ, Sch Math, Guangzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Besov space; local solution; magneto-micropolar equations; uniqueness; DECAY;
D O I
10.1002/mma.9078
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the Cauchy problem of the d-dimensional magneto-micropolar equations (d=2$$ d=2 $$ or d=3$$ d=3 $$) with general fractional dissipation. The aim of this paper is to obtain the existence and uniqueness of solutions in the weakest possible inhomogeneous Besov spaces. Using the technical tools of Litttlewood-Paley decomposition and Besov spaces theory, we obtain the local existence in the functional setting of inhomogeneous Besov spaces. Furthermore, such solutions are unique only in 2D case.
引用
收藏
页码:9617 / 9651
页数:35
相关论文
共 50 条
  • [1] A uniqueness result for the d-dimensional magnetohydrodynamics equations with fractional dissipation in Besov spaces
    Qiu, Hua
    Wang, Xia
    Yao, Zheng-an
    PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2025, 6 (01):
  • [2] Global regularity of the 3D magneto-micropolar equations with fractional dissipation
    Jia, Yan
    Xie, Qianqian
    Dong, Bo-Qing
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (01):
  • [3] Global regularity for the 2D magneto-micropolar equations with partial and fractional dissipation
    Yuan, Baoquan
    Qiao, Yuanyuan
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 76 (10) : 2345 - 2359
  • [4] Regularity of Weak Solutions to the 3D Magneto-Micropolar Equations in Besov Spaces
    Yuan, Baoquan
    Li, Xiao
    ACTA APPLICANDAE MATHEMATICAE, 2019, 163 (01) : 207 - 223
  • [5] Global regularity of the 3D magneto-micropolar equations with fractional dissipation
    Yan Jia
    Qianqian Xie
    Bo-Qing Dong
    Zeitschrift für angewandte Mathematik und Physik, 2022, 73
  • [6] The 2D magneto-micropolar equations with partial dissipation
    Regmi, Dipendra
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (12) : 4305 - 4317
  • [7] Global regularity for 2D fractional magneto-micropolar equations
    Shang, Haifeng
    Wu, Jiahong
    MATHEMATISCHE ZEITSCHRIFT, 2021, 297 (1-2) : 775 - 802
  • [8] Global regularity for the 2D magneto-micropolar system with partial and fractional dissipation
    Liu, Yujun
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (05) : 2491 - 2515
  • [9] An improved regularity criterion for the 3D magneto-micropolar equations in homogeneous Besov space
    Zhang, Panpan
    Yuan, Baoquan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 499 (01)
  • [10] Global regularity of magneto-micropolar equations with logarithmically dissipation
    Wu, Jingbo
    Nan, Xiaoqin
    Jia, Yan
    DYNAMICS OF PARTIAL DIFFERENTIAL EQUATIONS, 2022, 19 (04) : 323 - 333