Understanding the role of Zn vacancy induced by sulfhydryl coordination for photocatalytic CO2 reduction on ZnIn2S4

被引:42
作者
Nie, Yu [1 ]
Bo, Tingting [3 ]
Zhou, Wei [3 ]
Hu, Huilin [4 ]
Huang, Xiang [5 ]
Wang, Huaiyuan [2 ]
Tan, Xin [1 ,5 ]
Liu, Lequan [4 ]
Ye, Jinhua [6 ]
Yu, Tao [2 ]
机构
[1] Tianjin Univ, Sch Environm Sci & Engn, Tianjin 300350, Peoples R China
[2] Tianjin Univ, Sch Chem Engn & Technol, Tianjin 300350, Peoples R China
[3] Tianjin Univ, Sch Sci, Tianjin 300350, Peoples R China
[4] Tianjin Univ TJU, NIMS Int Collaborat Lab, Tianjin 300072, Peoples R China
[5] Tibet Univ, Sch Sci, Lhasa 850000, Peoples R China
[6] Natl Inst Mat Sci NIMS, Int Ctr Mat Nanoarchitecton WPI MANA, Ibaraki 3050047, Japan
基金
中国国家自然科学基金;
关键词
VISIBLE-LIGHT; ELECTRON TRANSFER; EFFICIENT; SCHEME; PHOTOREDUCTION; NANOCRYSTALS; FABRICATION; CDIN2S4; CDS;
D O I
10.1039/d2ta08336a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
How to regulate the energy barrier of *COOH is the rate determining step of the photocatalytic reduction of CO2 to produce gaseous CO. Herein, an appropriate Zn vacancy on ZnIn2S4 was synthesised to achieve the desired photocatalytic CO2 reduction capacity (CO: 5.63 mmol g(-1) h(-1)) and selectivity (CO: 97.9%). Various sulfhydryl groups were selected to regulate the Zn vacancy formation in ZnIn2S4, which directly generated the unsaturated coordination state of the sulfur adjacent to the Zn vacancy accompanied by less electrons when compared to ZnIn2S4 without Zn vacancy. Comprehensive experimental analysis and theoretical calculations demonstrated that the appropriate Zn vacancy tuned the Gibbs free energy of *COOH from the endothermic process to the exothermic process in the process of the photoreduction CO2. This work provided an engineering method for cation vacancies and improvement of the efficiency of photocatalytic CO2 reduction by adjusting the energy barrier of intermediate.
引用
收藏
页码:1793 / 1800
页数:8
相关论文
共 64 条
[1]   Semiconductor Nanocrystal Engineering by Applying Thiol- and Solvent-Coordinated Cation Exchange Kinetics [J].
Bai, Bing ;
Xu, Meng ;
Li, Nan ;
Chen, Wenxing ;
Liu, Jiajia ;
Liu, Jia ;
Rong, Hongpan ;
Fenske, Dieter ;
Zhang, Jiatao .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (15) :4852-4857
[2]   Dimension-Matched Zinc Phthalocyanine/BiVO4 Ultrathin Nanocomposites for CO2 Reduction as Efficient Wide-Visible-Light-Driven Photocatalysts via a Cascade Charge Transfer [J].
Bian, Ji ;
Feng, Jiannan ;
Zhang, Ziqing ;
Li, Zhijun ;
Zhang, Yuhang ;
Liu, Yadi ;
Ali, Sharafat ;
Qu, Yang ;
Bai, Linlu ;
Xie, Jijia ;
Tang, Dongyan ;
Li, Xin ;
Bai, Fuquan ;
Tang, Junwang ;
Jing, Liqiang .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (32) :10873-10878
[3]   In Situ Grown Monolayer N-Doped Graphene on CdS Hollow Spheres with Seamless Contact for Photocatalytic CO2 Reduction [J].
Bie, Chuanbiao ;
Zhu, Bicheng ;
Xu, Feiyan ;
Zhang, Liuyang ;
Yu, Jiaguo .
ADVANCED MATERIALS, 2019, 31 (42)
[4]   2D/2D Heterojunction of Ultrathin MXene/Bi2WO6 Nanosheets for Improved Photocatalytic CO2 Reduction [J].
Cao, Shaowen ;
Shen, Baojia ;
Tong, Tong ;
Fu, Junwei ;
Yu, Jiaguo .
ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (21)
[5]   Fabricating sandwich-shelled ZnCdS/ZnO/ZnCdS dodecahedral cages with "one stone" as Z-scheme photocatalysts for highly efficient hydrogen production [J].
Chen, Jianmin ;
Shen, Zirong ;
Lv, Siming ;
Shen, Kui ;
Wu, Rongfang ;
Jiang, Xiao-fang ;
Fan, Ting ;
Chen, Junying ;
Li, Yingwei .
JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (40) :19631-19642
[6]   Spatial distribution of ZnIn2S4 nanosheets on g-C3N4 microtubes promotes photocatalytic CO2 reduction [J].
Chen, Kaihang ;
Wang, Xuanwei ;
Li, Qiuyun ;
Feng, Ya-Nan ;
Chen, Fei-Fei ;
Yu, Yan .
CHEMICAL ENGINEERING JOURNAL, 2021, 418
[7]   A direct Z-scheme g-C3N4/SnS2 photocatalyst with superior visible-light CO2 reduction performance [J].
Di, Tingmin ;
Zhu, Bicheng ;
Cheng, Bei ;
Yu, Jiaguo ;
Xu, Jingsan .
JOURNAL OF CATALYSIS, 2017, 352 :532-541
[8]   TiO2 Facet-dependent reconstruction and photocatalysis of CuOx/TiO2 photocatalysts in CO2 photoreduction [J].
Fang, Fei ;
Liu, Yuanxu ;
Sun, Xiao ;
Fu, Cong ;
Bhoi, Yagna Prakash ;
Xiong, Wei ;
Huang, Weixin .
APPLIED SURFACE SCIENCE, 2021, 564
[9]   NMR Chemical Shifts of Trace Impurities: Common Laboratory Solvents, Organics, and Gases in Deuterated Solvents Relevant to the Organometallic Chemist [J].
Fulmer, Gregory R. ;
Miller, Alexander J. M. ;
Sherden, Nathaniel H. ;
Gottlieb, Hugo E. ;
Nudelman, Abraham ;
Stoltz, Brian M. ;
Bercaw, John E. ;
Goldberg, Karen I. .
ORGANOMETALLICS, 2010, 29 (09) :2176-2179
[10]   Transition metal dichalcogenide-based mixed-dimensional heterostructures for visible-light-driven photocatalysis: Dimensionality and interface engineering [J].
Gan, Xiaorong ;
Lei, Dangyuan ;
Ye, Ruquan ;
Zhao, Huimin ;
Wong, Kwok-Yin .
NANO RESEARCH, 2021, 14 (06) :2003-2022