Effect of Precursor Gas on Growth Temperature and Electrical Conduction of Carbon Nanowalls in Microwave Plasma-Enhanced Chemical Vapor Deposition

被引:1
作者
Huang, Lei [1 ]
Ikematsu, Hiroto [1 ]
Kato, Yoshimine [2 ]
Teii, Kungen [1 ]
机构
[1] Kyushu Univ, Dept Adv Energy Sci & Engn, Fukuoka 8168580, Japan
[2] Kyushu Univ, Dept Mat Sci & Engn, Fukuoka 8190395, Japan
基金
日本学术振兴会;
关键词
Plasma temperature; Substrates; Plasmas; Temperature distribution; Carbon; Temperature measurement; Methane; Amorphous carbon; chemical vapor deposition (CVD); electronic transport; microwave; vertical graphene; RAMAN-SPECTRA; THIN-FILMS; NANODIAMOND; ELECTRODE;
D O I
10.1109/TPS.2022.3204458
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
microwave plasmas are used to prepare nitrogen-incorporated carbon nanowalls (CNWs) by chemical vapor deposition using acetylene and methane as precursor gases. The growth temperature range for acetylene is shown to be totally lower than that (> 1000 ?) for methane, which is attributed to the difference in degree of hydrogenation of radical species in the two plasmas. The structural order and cluster size of sp(2) carbon phase in CNWs characterized by the Raman spectroscopy increase initially and, then, decrease with temperature in each temperature range, showing the same trend as the inverse of the sheet resistance of CNWs. The results indicate that the carrier transport in CNWs depends exclusively on the microstructure of sp(2) carbon phase, despite a large difference in the growth temperature range depending on the precursor gas.
引用
收藏
页码:298 / 302
页数:5
相关论文
共 39 条
[1]   Effect of nitrogen on the electronic properties of ultrananocrystalline diamond thin films grown on quartz and diamond substrates [J].
Achatz, P. ;
Williams, O. A. ;
Bruno, P. ;
Gruen, D. M. ;
Garrido, J. A. ;
Stutzmann, M. .
PHYSICAL REVIEW B, 2006, 74 (15)
[2]   Control of the Growth Regimes of Nanodiamond and Nanographite in Microwave Plasmas [J].
Cheng, C. Y. ;
Teii, K. .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 2012, 40 (07) :1783-1788
[3]   Characterization of C:H:N deposition from CH4/N-2 rf plasmas using optical emission spectroscopy [J].
Clay, KJ ;
Speakman, SP ;
Amaratunga, GAJ ;
Silva, SRP .
JOURNAL OF APPLIED PHYSICS, 1996, 79 (09) :7227-7233
[4]   Interpretation of Raman spectra of disordered and amorphous carbon [J].
Ferrari, AC ;
Robertson, J .
PHYSICAL REVIEW B, 2000, 61 (20) :14095-14107
[5]   Mass spectrometric studies of a CH4/H2 microwave plasma under diamond deposition conditions [J].
Fujii, T ;
Kareev, M .
JOURNAL OF APPLIED PHYSICS, 2001, 89 (05) :2543-2546
[6]   Carbon nanowalls thin films as nanostructured electrode materials in vanadium redox flow batteries [J].
Gonzalez, Zoraida ;
Vizireanu, Sorin ;
Dinescu, Gheorghe ;
Blanco, Clara ;
Santamaria, Ricardo .
NANO ENERGY, 2012, 1 (06) :833-839
[7]   Distinct nonequilibrium plasma chemistry of C2 affecting the synthesis of nanodiamond thin films from C2H2 (1%)/H2/Ar-rich plasmas [J].
Gordillo-Vázquez, FJ ;
Albella, JM .
JOURNAL OF APPLIED PHYSICS, 2003, 94 (09) :6085-6090
[8]   MnO2/carbon nanowalls composite electrode for supercapacitor application [J].
Hassan, Sameh ;
Suzuki, Masaaki ;
Mori, Shinsuke ;
Abd El-Moneim, Ahmed .
JOURNAL OF POWER SOURCES, 2014, 249 :21-27
[9]   Fabrication of vertically aligned carbon nanowalls using capacitively coupled plasma-enhanced chemical vapor deposition assisted by hydrogen radical injection [J].
Hiramatsu, M ;
Shiji, K ;
Amano, H ;
Hori, M .
APPLIED PHYSICS LETTERS, 2004, 84 (23) :4708-4710
[10]   Enhanced Field Emission from Ultrananocrystalline Diamond-Decorated Carbon Nanowalls Prepared by a Self-Assembly Seeding Technique [J].
Huang, Lei ;
Harajiri, Shungo ;
Wang, Shaoqing ;
Wu, Xiangqing ;
Teii, Kungen .
ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (03) :4389-4398