GNNHLS: Evaluating Graph Neural Network Inference via High-Level Synthesis

被引:2
|
作者
Zhao, Chenfeng [1 ]
Dong, Zehao [1 ]
Chen, Yixin [1 ]
Zhang, Xuan [1 ]
Chamberlain, Roger D. [1 ]
机构
[1] Washington Univ, McKelvey Sch Engn, St Louis, MO 63110 USA
来源
2023 IEEE 41ST INTERNATIONAL CONFERENCE ON COMPUTER DESIGN, ICCD | 2023年
关键词
field-programmable gate arrays; graph neural networks; high-level synthesis;
D O I
10.1109/ICCD58817.2023.00092
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We present GNNHLS, an open-source framework to comprehensively evaluate GNN inference acceleration on FPGAs via HLS, containing a software stack for data generation and baseline deployment and FPGA implementations of 6 well-tuned GNN HLS kernels. Evaluating on 4 graph datasets with distinct topologies and scales, the results show that GNNHLS achieves up to 50.8x speedup and 423x energy reduction relative to the CPU baselines. Compared with the GPU baselines, GNNHLS achieves up to 5.16x speedup and 74.5x energy reduction.
引用
收藏
页码:574 / 577
页数:4
相关论文
共 50 条
  • [21] Two-Level Graph Neural Network
    Ai, Xing
    Sun, Chengyu
    Zhang, Zhihong
    Hancock, Edwin R.
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (04) : 4593 - 4606
  • [22] Learning to Compare Hardware Designs for High-Level Synthesis
    Bai, Yunsheng
    Sohrabizadeh, Atefeh
    Ding, Zijian
    Liang, Rongjian
    Li, Weikai
    Wang, Ding
    Ren, Haoxing
    Sun, Yizhou
    Cong, Jason
    PROCEEDINGS OF THE 2024 ACM/IEEE INTERNATIONAL SYMPOSIUM ON MACHINE LEARNING FOR CAD, MLCAD 2024, 2024,
  • [23] Tensor Optimization for High-Level Synthesis Design Flows
    Siracusa, Marco
    Ferrandi, Fabrizio
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2020, 39 (11) : 4217 - 4228
  • [24] A review of high-level synthesis for dynamically reconfigurable FPGAs
    Zhang, XJ
    Ng, KW
    MICROPROCESSORS AND MICROSYSTEMS, 2000, 24 (04) : 199 - 211
  • [25] Global Analysis of C Concurrency in High-Level Synthesis
    Ramanathan, Nadesh
    Constantinides, George A.
    Wickerson, John
    IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2021, 29 (01) : 24 - 37
  • [26] Aspect-Level Attributed Network Embedding via Variational Graph Neural Networks
    Wang, Hengliang
    Mu, Kedian
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS (DASFAA 2020), PT II, 2020, 12113 : 398 - 414
  • [27] Educational Tool-spaces for Convolutional Neural Network FPGA Design Space Exploration Using High-Level Synthesis
    Yarnell, Richard C.
    Hossain, Mousam
    Medina, Raul Graterol
    Pindoria, Ayush
    Ghimire, Sujan
    Chowdhury, Muhtasim Alam
    Salehi, Soheil
    Bai, Yu
    Demara, Ronald F.
    PROCEEDING OF THE GREAT LAKES SYMPOSIUM ON VLSI 2024, GLSVLSI 2024, 2024, : 343 - 346
  • [28] Probabilistic Scheduling in High-Level Synthesis
    Cheng, Jianyi
    Wickerson, John
    Constantinides, George A.
    2021 IEEE 29TH ANNUAL INTERNATIONAL SYMPOSIUM ON FIELD-PROGRAMMABLE CUSTOM COMPUTING MACHINES (FCCM 2021), 2021, : 195 - 203
  • [29] Separation Logic for High-Level Synthesis
    Winterstein, Felix J.
    Bayliss, Samuel R.
    Constantinides, George A.
    ACM TRANSACTIONS ON RECONFIGURABLE TECHNOLOGY AND SYSTEMS, 2016, 9 (02)
  • [30] Translation Validation of High-Level Synthesis
    Kundu, Sudipta
    Lerner, Sorin
    Gupta, Rajesh K.
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2010, 29 (04) : 566 - 579