Hierarchical variable clustering via copula-based divergence measures between random vectors

被引:8
|
作者
De Keyser, Steven [1 ]
Gijbels, Irene [1 ]
机构
[1] Katholieke Univ Leuven, Dept Math, Celestijnenlaan 200B, B-3001 Leuven, Belgium
关键词
Copulas; phi-dependence; Random vectors; Trans-elliptical distributions; Variable clustering; KERNEL ESTIMATION;
D O I
10.1016/j.ijar.2023.109090
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This article considers rank-invariant clustering of continuous data via copula-based phi-dependence measures. The general theoretical framework establishes dependence quantification between random vectors (groups of variables), which is used for measuring the similarity between variable clusters in an agglomerative hierarchical procedure afterwards. Special attention is devoted to meta-elliptical copulas, where we present an improved kernel estimator for the density generator and a corresponding bandwidth selector. This allows for non-Gaussian similarities also capturing e.g. tail dependence. Further, a fully non-parametric estimator is considered, enabling cluster detection in contexts where other measures fail. The theory is supported by simulations and a real data example, focusing on cluster analysis of continuous variables.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] Copula-based measures of reflection and permutation asymmetry and statistical tests
    Krupskii, Pavel
    STATISTICAL PAPERS, 2017, 58 (04) : 1165 - 1187
  • [22] Copula-based measures of reflection and permutation asymmetry and statistical tests
    Pavel Krupskii
    Statistical Papers, 2017, 58 : 1165 - 1187
  • [23] A variable clustering approach for overdispersed high-dimensional count data using a copula-based mixture model
    Brini, Alberto
    Manju, Abu
    van den Heuvel, Edwin R.
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2024,
  • [24] Wasserstein Dissimilarity for Copula-Based Clustering of Time Series with Spatial Information
    Benevento, Alessia
    Durante, Fabrizio
    MATHEMATICS, 2024, 12 (01)
  • [25] A hierarchical copula-based world-wide valuation of sovereign risk
    Bernardi, Enrico
    Falangi, Federico
    Romagnoli, Silvia
    INSURANCE MATHEMATICS & ECONOMICS, 2015, 61 : 155 - 169
  • [26] Copula-based pairwise estimator for quantile regression with hierarchical missing data
    Verhasselt, Anneleen
    Florez, Alvaro J.
    Molenberghs, Geert
    Van Keilegom, Ingrid
    STATISTICAL MODELLING, 2025, 25 (02) : 129 - 149
  • [27] Copula-Based Fuzzy Clustering of Count Data with Total Variation Distance
    D'Urso, Pierpaolo
    De Giovanni, Livia
    Federico, Lorenzo
    Vitale, Vincenzina
    COMBINING, MODELLING AND ANALYZING IMPRECISION, RANDOMNESS AND DEPENDENCE, SMPS 2024, 2024, 1458 : 126 - 133
  • [28] Copula-Based Mutual Information Measures and Mutual Entropy: A Brief Survey
    Ghosh, Indranil
    Sunoj, S. M.
    MATHEMATICAL METHODS OF STATISTICS, 2024, 33 (03) : 297 - 309
  • [29] Streamflow prediction in ungauged catchments using copula-based dissimilarity measures
    Samaniego, Luis
    Bardossy, Andras
    Kumar, Rohini
    WATER RESOURCES RESEARCH, 2010, 46