Copulas;
phi-dependence;
Random vectors;
Trans-elliptical distributions;
Variable clustering;
KERNEL ESTIMATION;
D O I:
10.1016/j.ijar.2023.109090
中图分类号:
TP18 [人工智能理论];
学科分类号:
081104 ;
0812 ;
0835 ;
1405 ;
摘要:
This article considers rank-invariant clustering of continuous data via copula-based phi-dependence measures. The general theoretical framework establishes dependence quantification between random vectors (groups of variables), which is used for measuring the similarity between variable clusters in an agglomerative hierarchical procedure afterwards. Special attention is devoted to meta-elliptical copulas, where we present an improved kernel estimator for the density generator and a corresponding bandwidth selector. This allows for non-Gaussian similarities also capturing e.g. tail dependence. Further, a fully non-parametric estimator is considered, enabling cluster detection in contexts where other measures fail. The theory is supported by simulations and a real data example, focusing on cluster analysis of continuous variables.
机构:
Slovak Univ Technol Bratislava, Fac Civil Engn, Dept Math & Descript Geometry, Radlinskeho 11, Bratislava 81005, Slovakia
Univ Ostrava, Inst Res & Applicat Fuzzy Modeling, 30 Dubna 22, Ostrava 70103, Czech RepublicSlovak Univ Technol Bratislava, Fac Civil Engn, Dept Math & Descript Geometry, Radlinskeho 11, Bratislava 81005, Slovakia
Mesiar, Radko
Sheikhi, Ayyub
论文数: 0引用数: 0
h-index: 0
机构:
Shahid Bahonar Univ Kerman, Fac Math & Comp, Dept Stat, Kerman 7616913439, IranSlovak Univ Technol Bratislava, Fac Civil Engn, Dept Math & Descript Geometry, Radlinskeho 11, Bratislava 81005, Slovakia