Edge device for ultraviolet fluorescence inspection of photovoltaic panels

被引:0
作者
Di Renzo, Andre Biffe [1 ]
Ruiz Zamarreno, Carlos [2 ]
Martelli, Cicero [3 ]
Cardozo da Silva, Jean Carlos [3 ]
机构
[1] Univ Tecnol Fed Parana, Inst Fed Fed Parana, Grad Program Elect & Comp Engn, Curitiba, Parana, Brazil
[2] Univ Publ Navarra, Dept Ingn Elect Elect & Comunicac, Pamplona, Spain
[3] Univ Tecnol Fed Parana, Grad Program Elect & Comp Engn, Curitiba, Parana, Brazil
来源
2023 IEEE SENSORS | 2023年
关键词
Artificial intelligence; edge-device; photovoltaic; ultraviolet; FIELD;
D O I
10.1109/SENSORS56945.2023.10325174
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Regular inspection of photovoltaic panels plays a key role in maximizing performance, ensuring safety, and extending the life of solar plants. This paper presents the construction of a 6W 365 nm ultraviolet light source for ultraviolet fluorescence (UVF) inspections coupled with an edge device used to capture and process the fluorescence images. In addition, an artificial intelligence (AI) algorithm was applied to identify and classify automatically healthy and defective cells in the captured images. The trained AI presents a precision of 89%, and this result shows that the development of an ultraviolet light source coupled with an edge device for automatic cell classification could help with the maintenance staff to make routine UVF inspections to identify possible defects in cell structure, which is the main contribution of the presented work.
引用
收藏
页数:4
相关论文
共 13 条
[1]   Photoluminescence for Defect Detection on Full-Sized Photovoltaic Modules [J].
Doll, Bernd ;
Hepp, Johannes ;
Hoffmann, Mathis ;
Schueler, Rene ;
Buerhop-Lutz, Claudia ;
Peters, Ian Marius ;
Hauch, Jens A. ;
Maier, Andreas ;
Brabec, Christoph J. .
IEEE JOURNAL OF PHOTOVOLTAICS, 2021, 11 (06) :1419-1429
[2]   Machine learning in photovoltaic systems: A review [J].
Gaviria, Jorge Felipe ;
Narvaez, Gabriel ;
Guillen, Camilo ;
Giraldo, Luis Felipe ;
Bressan, Michael .
RENEWABLE ENERGY, 2022, 196 :298-318
[3]  
Gilleland B, 2019, IEEE PHOT SPEC CONF, P2575, DOI [10.1109/pvsc40753.2019.8981262, 10.1109/PVSC40753.2019.8981262]
[4]  
Hobbs WB, 2020, IEEE PHOT SPEC CONF, P2350, DOI [10.1109/PVSC45281.2020.9300580, 10.1109/pvsc45281.2020.9300580]
[5]   Inspection and condition monitoring of large-scale photovoltaic power plants: A review of imaging technologies [J].
Hoiaas, Ingeborg ;
Grujic, Katarina ;
Imenes, Anne Gerd ;
Burud, Ingunn ;
Olsen, Espen ;
Belbachir, Nabil .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2022, 161
[6]   Methods of photovoltaic fault detection and classification: A review [J].
Hong, Ying-Yi ;
Pula, Rolando A. .
ENERGY REPORTS, 2022, 8 :5898-5929
[7]   Crack Statistic for Wafer-Based Silicon Solar Cell Modules in the Field Measured by UV Fluorescence [J].
Koentges, M. ;
Kajari-Schroeder, S. ;
Kunze, I. .
IEEE JOURNAL OF PHOTOVOLTAICS, 2013, 3 (01) :95-101
[8]   Review: Ultraviolet Fluorescence as Assessment Tool for Photovoltaic Modules [J].
Koentges, Marc ;
Morlier, Arnaud ;
Eder, Gabriele ;
Fleiss, Eckhard ;
Kubicek, Bernhard ;
Lin, Jay .
IEEE JOURNAL OF PHOTOVOLTAICS, 2020, 10 (02) :616-633
[9]   Application of Artificial Neural Networks to photovoltaic fault detection and diagnosis: A review [J].
Li, B. ;
Delpha, C. ;
Diallo, D. ;
Migan-Dubois, A. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2021, 138
[10]   Correlation of UV Fluorescence Images With Performance Loss of Field-Retrieved Photovoltaic Modules [J].
Li, Fang ;
Buddha, Viswa Sai Pavan ;
Schneller, Eric J. ;
Iqbal, Nafis ;
Colvin, Dylan J. ;
Davis, Kristopher O. ;
TamizhMani, GovindaSamy .
IEEE JOURNAL OF PHOTOVOLTAICS, 2021, 11 (04) :926-935