INTRAGRO: A machine learning approach to predict future growth of trees under climate change

被引:0
作者
Aryal, Sugam [1 ]
Griessinger, Jussi [1 ]
Dyola, Nita [2 ,3 ]
Gaire, Narayan Prasad [4 ]
Bhattarai, Tribikram [5 ]
Braeuning, Achim [1 ]
机构
[1] Friedrich Alexander Univ Erlangen Nurnberg, Inst Geog, Wetterkreuz 15, D-91058 Erlangen, Bayern, Germany
[2] Chinese Acad Sci, Inst Tibetan Plateau Res, State Key Lab Tibetan Plateau Earth Syst Resources, Beijing, Peoples R China
[3] Univ Quebec Chicoutimi, Dept Sci Fondamentales, Lab Ecosyst Terr Boreaux, Chicoutimi, PQ, Canada
[4] Tribhuvan Univ, Dept Environm Sci, Patan Multiple Campus, Lalitpur, Nepal
[5] Tribhuvan Univ, Cent Dept Biotechnol, Kathmandu, Nepal
来源
ECOLOGY AND EVOLUTION | 2023年 / 13卷 / 10期
关键词
dendrometer; growing-season change; intra-annual growth; machine learning algorithm; Pinus roxburghii; sub-tropical Nepal; DAILY PATTERNS; DRY FOREST; DENDROMETER; INFORMATION; INCREMENT; RESPONSES;
D O I
10.1002/ece3.10626
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
The escalating impact of climate change on global terrestrial ecosystems demands a robust prediction of the trees' growth patterns and physiological adaptation for sustainable forestry and successful conservation efforts. Understanding these dynamics at an intra-annual resolution can offer deeper insights into tree responses under various future climate scenarios. However, the existing approaches to infer cambial or leaf phenological change are mainly focused on certain climatic zones (such as higher latitudes) or species with foliage discolouration during the fall season. In this study, we demonstrated a novel approach (INTRAGRO) to combine intra-annual circumference records generated by dendrometers coupled to the output of climate models to predict future tree growth at intra-annual resolution using a series of supervised and unsupervised machine learning algorithms. INTRAGRO performed well using our dataset, that is dendrometer data of P. roxburghii Sarg. from the subtropical mid-elevation belt of Nepal, with robust test statistics. Our growth prediction shows enhanced tree growth at our study site for the middle and end of the 21st century. This result is remarkable since the predicted growing season by INTRAGRO is expected to shorten due to changes in seasonal precipitation. INTRAGRO's key advantage is the opportunity to analyse changes in trees' intra-annual growth dynamics on a global scale, regardless of the investigated tree species, regional climate and geographical conditions. Such information is important to assess tree species' growth performance and physiological adaptation to growing season change under different climate scenarios.
引用
收藏
页数:16
相关论文
共 83 条
[11]   Using Automated Point Dendrometers to Analyze Tropical Treeline Stem Growth at Nevado de Colima, Mexico [J].
Biondi, Franco ;
Hartsough, Peter .
SENSORS, 2010, 10 (06) :5827-5844
[12]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[13]   Forest carbon sink neutralized by pervasive growth-lifespan trade-offs [J].
Brienen, R. J. W. ;
Caldwell, L. ;
Duchesne, L. ;
Voelker, S. ;
Barichivich, J. ;
Baliva, M. ;
Ceccantini, G. ;
Di Filippo, A. ;
Helama, S. ;
Locosselli, G. M. ;
Lopez, L. ;
Piovesan, G. ;
Schongart, J. ;
Villalba, R. ;
Gloor, E. .
NATURE COMMUNICATIONS, 2020, 11 (01)
[14]   Comparing the Cell Dynamics of Tree-Ring Formation Observed in Microcores and as Predicted by the Vaganov-Shashkin Model [J].
Butto, Valentina ;
Shishov, Vladimir ;
Tychkov, Ivan ;
Popkova, Margarita ;
He, Minhui ;
Rossi, Sergio ;
Deslauriers, Annie ;
Morin, Hubert .
FRONTIERS IN PLANT SCIENCE, 2020, 11
[15]   Tree responses to moisture fluctuations in a neotropical dry forest as potential climate change indicators [J].
Butz, Philipp ;
Raffelsbauer, Volker ;
Graefe, Sophie ;
Peters, Thorsten ;
Cueva, Eduardo ;
Hoelscher, Dirk ;
Braeuning, Achim .
ECOLOGICAL INDICATORS, 2017, 83 :559-571
[16]   Forests of the future: Climate change impacts and implications for carbon storage in the Pacific Northwest, USA [J].
Case, Michael J. ;
Johnson, Brittany G. ;
Bartowitz, Kristina J. ;
Hudiburg, Tara W. .
FOREST ECOLOGY AND MANAGEMENT, 2021, 482
[17]   Easy-to-use spatial random-forest-based downscaling-calibration method for producing precipitation data with high resolution and high accuracy [J].
Chen, Chuanfa ;
Hu, Baojian ;
Li, Yanyan .
HYDROLOGY AND EARTH SYSTEM SCIENCES, 2021, 25 (11) :5667-5682
[18]  
Cuturi M, 2017, PR MACH LEARN RES, V70
[19]   Climate-change-driven growth decline of European beech forests [J].
del Castillo, Edurne Martinez ;
Zang, Christian S. ;
Buras, Allan ;
Hacket-Pain, Andrew ;
Esper, Jan ;
Serrano-Notivoli, Roberto ;
Hartl, Claudia ;
Weigel, Robert ;
Klesse, Stefan ;
Resco de Dios, Victor ;
Scharnweber, Tobias ;
Dorado-Linan, Isabel ;
Van der Maaten-Theunissen, Marieke ;
van der Maaten, Ernst ;
Jump, Alistair ;
Mikac, Sjepan ;
Banzragch, Bat-Enerel ;
Beck, Wolfgang ;
Cavin, Liam ;
Claessens, Hugues ;
Cada, Vojtech ;
Cufar, Katarina ;
Dulamsuren, Choimaa ;
Gricar, Jozica ;
Gil-Pelegrin, Eustaquio ;
Janda, Pavel ;
Kazimirovic, Marko ;
Kreyling, Juergen ;
Latte, Nicolas ;
Leuschner, Christoph ;
Alberto Longares, Luis ;
Menzel, Annette ;
Merela, Maks ;
Motta, Renzo ;
Muffler, Lena ;
Nola, Paola ;
Petritan, Any Mary ;
Petritan, Ion Catalin ;
Prislan, Peter ;
Rubio-Cuadrado, Alvaro ;
Rydval, Milos ;
Stajic, Branko ;
Svoboda, Miroslav ;
Toromani, Elvin ;
Trotsiuk, Volodymyr ;
Wilmking, Martin ;
Zlatanov, Tzvetan ;
de Luis, Martin .
COMMUNICATIONS BIOLOGY, 2022, 5 (01)
[20]   Daily weather response of balsam fir (Abies balsamea (L.) Mill.) stem radius increment from dendrometer analysis in the boreal forests of Quebec (Canada) [J].
Deslauriers, A ;
Morin, H ;
Urbinati, C ;
Carrer, M .
TREES-STRUCTURE AND FUNCTION, 2003, 17 (06) :477-484