Dimension by Dimension Finite Volume HWENO Method for Hyperbolic Conservation Laws

被引:2
作者
Zheng, Feng [1 ]
Qiu, Jianxian [2 ,3 ]
机构
[1] Fujian Normal Univ, Coll Math & Stat, Fuzhou 350117, Fujian, Peoples R China
[2] Xiamen Univ, Sch Math Sci, Xiamen 361005, Fujian, Peoples R China
[3] Xiamen Univ, Fujian Prov Key Lab Math Modeling & High Performan, Xiamen 361005, Fujian, Peoples R China
基金
中国国家自然科学基金;
关键词
Finite volume; Dimension by dimension; HWENO; Hyperbolic conservation laws; HERMITE WENO SCHEMES; DISCONTINUOUS GALERKIN METHOD; EFFICIENT IMPLEMENTATION; NUMERICAL-SIMULATION; EQUATIONS; LIMITERS;
D O I
10.1007/s42967-023-00279-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose a finite volume Hermite weighted essentially non-oscillatory (HWENO) method based on the dimension by dimension framework to solve hyperbolic conservation laws. It can maintain the high accuracy in the smooth region and obtain the high resolution solution when the discontinuity appears, and it is compact which will be good for giving the numerical boundary conditions. Furthermore, it avoids complicated least square procedure when we implement the genuine two dimensional (2D) finite volume HWENO reconstruction, and it can be regarded as a generalization of the one dimensional (1D) HWENO method. Extensive numerical tests are performed to verify the high resolution and high accuracy of the scheme.
引用
收藏
页码:605 / 624
页数:20
相关论文
共 35 条
[1]   A sub-cell based indicator for troubled zones in RKDG schemes and a novel class of hybrid RKDG plus HWENO schemes [J].
Balsara, Dinshaw S. ;
Altmann, Christoph ;
Munz, Claus-Dieter ;
Dumbser, Michael .
JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 226 (01) :586-620
[2]   A Hermite upwind WENO scheme for solving hyperbolic conservation laws [J].
Capdeville, G. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (04) :2430-2454
[3]   A FINITE-VOLUME HIGH-ORDER ENO SCHEME FOR 2-DIMENSIONAL HYPERBOLIC SYSTEMS [J].
CASPER, J ;
ATKINS, HL .
JOURNAL OF COMPUTATIONAL PHYSICS, 1993, 106 (01) :62-76
[4]   The Runge-Kutta discontinuous Galerkin method for conservation laws V - Multidimensional systems [J].
Cockburn, B ;
Shu, CW .
JOURNAL OF COMPUTATIONAL PHYSICS, 1998, 141 (02) :199-224
[5]   A unified framework for the construction of one-step finite volume and discontinuous Galerkin schemes on unstructured meshes [J].
Dumbser, Michael ;
Balsara, Dinshaw S. ;
Toro, Eleuterio F. ;
Munz, Claus-Dieter .
JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (18) :8209-8253
[6]   Numerical simulation of high Mach number astrophysical jets with radiative cooling [J].
Ha, Y ;
Gardner, CL ;
Gelb, A ;
Shu, CW .
JOURNAL OF SCIENTIFIC COMPUTING, 2005, 24 (01) :597-612
[7]   Weighted essentially non-oscillatory schemes on triangular meshes [J].
Hu, CQ ;
Shu, CW .
JOURNAL OF COMPUTATIONAL PHYSICS, 1999, 150 (01) :97-127
[8]   An interface interaction method for compressible multifluids [J].
Hu, XY ;
Khoo, BC .
JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 198 (01) :35-64
[9]   Weighted ENO schemes for Hamilton-Jacobi equations [J].
Jiang, GS ;
Peng, DP .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2000, 21 (06) :2126-2143
[10]   Efficient implementation of weighted ENO schemes [J].
Jiang, GS ;
Shu, CW .
JOURNAL OF COMPUTATIONAL PHYSICS, 1996, 126 (01) :202-228