Decentralized federated learning through proxy model sharing

被引:63
作者
Kalra, Shivam [1 ,2 ,3 ]
Wen, Junfeng [4 ]
Cresswell, Jesse C. [1 ]
Volkovs, Maksims [1 ]
Tizhoosh, H. R. [2 ,3 ,5 ]
机构
[1] Layer 6 AI, Toronto, ON, Canada
[2] Univ Waterloo, Kimia Lab, Toronto, ON, Canada
[3] Vector Inst, Toronto, ON, Canada
[4] Carleton Univ, Sch Comp Sci, Ottawa, ON, Canada
[5] Mayo Clin, Dept AI & Informat, Rhazes Lab, Rochester, MN 55905 USA
基金
加拿大自然科学与工程研究理事会;
关键词
PERFORMANCE; NOISE;
D O I
10.1038/s41467-023-38569-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Institutions in highly regulated domains such as finance and healthcare often have restrictive rules around data sharing. Federated learning is a distributed learning framework that enables multi-institutional collaborations on decentralized data with improved protection for each collaborator's data privacy. In this paper, we propose a communication-efficient scheme for decentralized federated learning called ProxyFL, or proxy-based federated learning. Each participant in ProxyFL maintains two models, a private model, and a publicly shared proxy model designed to protect the participant's privacy. Proxy models allow efficient information exchange among participants without the need of a centralized server. The proposed method eliminates a significant limitation of canonical federated learning by allowing model heterogeneity; each participant can have a private model with any architecture. Furthermore, our protocol for communication by proxy leads to stronger privacy guarantees using differential privacy analysis. Experiments on popular image datasets, and a cancer diagnostic problem using high-quality gigapixel histology whole slide images, show that ProxyFL can outperform existing alternatives with much less communication overhead and stronger privacy.
引用
收藏
页数:10
相关论文
共 64 条
[1]   Deep Learning with Differential Privacy [J].
Abadi, Martin ;
Chu, Andy ;
Goodfellow, Ian ;
McMahan, H. Brendan ;
Mironov, Ilya ;
Talwar, Kunal ;
Zhang, Li .
CCS'16: PROCEEDINGS OF THE 2016 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, 2016, :308-318
[2]   Federated learning and differential privacy for medical image analysis [J].
Adnan, Mohammed ;
Kalra, Shivam ;
Cresswell, Jesse C. ;
Taylor, Graham W. ;
Tizhoosh, Hamid R. .
SCIENTIFIC REPORTS, 2022, 12 (01)
[3]   Siloed Federated Learning for Multi-centric Histopathology Datasets [J].
Andreux, Mathieu ;
du Terrail, Jean Ogier ;
Beguier, Constance ;
Tramel, Eric W. .
DOMAIN ADAPTATION AND REPRESENTATION TRANSFER, AND DISTRIBUTED AND COLLABORATIVE LEARNING, DART 2020, DCL 2020, 2020, 12444 :129-139
[4]  
Assran Mahmoud, 2019, INT C MACHINE LEARNI, P344
[5]  
Balle B, 2020, PR MACH LEARN RES, V108, P2496
[6]   From Detection of Individual Metastases to Classification of Lymph Node Status at the Patient Level: The CAMELYON17 Challenge [J].
Bandi, Peter ;
Geessink, Oscar ;
Manson, Quirine ;
van Dijk, Marcory ;
Balkenhol, Maschenka ;
Hermsen, Meyke ;
Bejnordi, Babak Ehteshami ;
Lee, Byungjae ;
Paeng, Kyunghyun ;
Zhong, Aoxiao ;
Li, Quanzheng ;
Zanjani, Farhad Ghazvinian ;
Zinger, Svitlana ;
Fukuta, Keisuke ;
Komura, Daisuke ;
Ovtcharov, Vlado ;
Cheng, Shenghua ;
Zeng, Shaoqun ;
Thagaard, Jeppe ;
Dahl, Anders B. ;
Lin, Huangjing ;
Chen, Hao ;
Jacobsson, Ludwig ;
Hedlund, Martin ;
Cetin, Melih ;
Halici, Eren ;
Jackson, Hunter ;
Chen, Richard ;
Both, Fabian ;
Franke, Joerg ;
Kusters-Vandevelde, Heidi ;
Vreuls, Willem ;
Bult, Peter ;
van Ginneken, Bram ;
van der Laak, Jeroen ;
Litjens, Geert .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (02) :550-560
[7]  
Bhowmick A, 2019, Arxiv, DOI arXiv:1812.00984
[8]   Evaluating reproducibility of AI algorithms in digital pathology with DAPPER [J].
Bizzego, Andrea ;
Bussola, Nicole ;
Chierici, Marco ;
Maggio, Valerio ;
Francescatto, Margherita ;
Cima, Luca ;
Cristoforetti, Marco ;
Jurman, Giuseppe ;
Furlanello, Cesare .
PLOS COMPUTATIONAL BIOLOGY, 2019, 15 (03)
[9]   Assessing Radiology Research on Artificial Intelligence: A Brief Guide for Authors, Reviewers, and Readers-From the Radiology Editorial Board [J].
Bluemke, David A. ;
Moy, Linda ;
Bredella, Miriam A. ;
Ertl-Wagner, Birgit B. ;
Fowler, Kathryn J. ;
Goh, Vicky J. ;
Halpern, Elkan F. ;
Hess, Christopher P. ;
Schiebler, Mark L. ;
Weiss, Clifford R. .
RADIOLOGY, 2020, 294 (03) :487-489
[10]   Towards Evaluating the Robustness of Neural Networks [J].
Carlini, Nicholas ;
Wagner, David .
2017 IEEE SYMPOSIUM ON SECURITY AND PRIVACY (SP), 2017, :39-57