Composite polymer electrolytes with ionic liquid grafted-Laponite for dendrite-free all-solid-state lithium metal batteries

被引:8
作者
Jin, Biyu [1 ,2 ]
Wang, Dongyun [3 ]
He, Yuan [1 ]
Mao, Jianjiang [1 ]
Kang, Yunqing [4 ]
Wan, Chao [1 ,3 ,4 ]
Xia, Wei [5 ]
Kim, Jeonghun [6 ,7 ]
Eguchi, Miharu [6 ,8 ]
Yamauchi, Yusuke [6 ,7 ,9 ]
机构
[1] Anhui Univ Technol, Sch Chem & Chem Engn, Anhui Key Lab Coal Clean Convers & High Valued Ut, Maanshan 243002, Peoples R China
[2] Univ Texas Austin, Texas Mat Inst, Mat Sci & Engn Program, Austin, TX 78712 USA
[3] Zhejiang Univ, Coll Chem & Biol Engn, Hangzhou 310027, Peoples R China
[4] Natl Inst Mat Sci NIMS, Res Ctr Mat Nanoarchitecton MANA, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan
[5] East China Normal Univ, Sch Chem & Mol Engn, Shanghai Key Lab Green Chem & Chem Proc, Shanghai 200062, Peoples R China
[6] Univ Queensland, Australian Inst Bioengn & Nanotechnol AIBN, Sch Chem Engn, Brisbane, Qld 4072, Australia
[7] Yonsei Univ, Dept Chem & Biomol Engn, 50 Yonsei ro, Seoul 03722, South Korea
[8] Waseda Univ, Sch Adv Sci & Engn, Dept Appl Chem, 3-4-1 Okubo, Tokyo, Tokyo 1698555, Japan
[9] Nagoya Univ, Grad Sch Engn, Dept Mat Proc Engn, Nagoya 4648603, Japan
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
PERFORMANCE; FILLER;
D O I
10.1039/d3sc01647a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Composite polymer electrolytes (CPEs) with high ionic conductivity and favorable electrolyte/electrode interfacial compatibility are promising alternatives to liquid electrolytes. However, severe parasitic reactions in the Li/electrolyte interface and the air-unstable inorganic fillers have hindered their industrial applications. Herein, surface-edge opposite charged Laponite (LAP) multilayer particles with high air stability were grafted with imidazole ionic liquid (IL-TFSI) to enhance the thermal, mechanical, and electrochemical performances of polyethylene oxide (PEO)-based CPEs. The electrostatic repulsion between multilayers of LAP-IL-TFSI enables them to be easily penetrated by PEO segments, resulting in a pronounced amorphous region in the PEO matrix. Therefore, the CPE-0.2LAP-IL-TFSI exhibits a high ionic conductivity of 1.5 x 10(-3) S cm(-1) and a high lithium-ion transference number of 0.53. Moreover, LAP-IL-TFSI ameliorates the chemistry of the solid electrolyte interphase, significantly suppressing the growth of lithium dendrites and extending the cycling life of symmetric Li cells to over 1000 h. As a result, the LiFePO4||CPE-0.2LAP-IL-TFSI||Li cell delivers an outstanding capacity retention of 80% after 500 cycles at 2C at 60 & DEG;C. CPE-LAP-IL-TFSI also shows good compatibility with high-voltage LiNi0.8Co0.1Mn0.1O2 cathodes.
引用
收藏
页码:7956 / 7965
页数:10
相关论文
共 68 条
  • [1] Preparation and Composition Optimization of PEO:MC Polymer Blend Films to Enhance Electrical Conductivity
    Ahmed, Hawzhin T.
    Abdullah, Omed Gh.
    [J]. POLYMERS, 2019, 11 (05)
  • [2] Al-Salih H, 2020, J ELECTROCHEM SOC, V167, DOI [10.1149/1945-7111/ab7fb8, 10.1147/1945-7111/ab7fb8]
  • [3] Progress in Solid Polymer Electrolytes for Lithium-Ion Batteries and Beyond
    An, Yong
    Han, Xue
    Liu, Yuyang
    Azhar, Alowasheeir
    Na, Jongbeom
    Nanjundan, Ashok Kumar
    Wang, Shengping
    Yu, Jingxian
    Yamauchi, Yusuke
    [J]. SMALL, 2022, 18 (03)
  • [4] Monolithic solid-electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization
    Cao, Xia
    Ren, Xiaodi
    Zou, Lianfeng
    Engelhard, Mark H.
    Huang, William
    Wang, Hansen
    Matthews, Bethany E.
    Lee, Hongkyung
    Niu, Chaojiang
    Arey, Bruce W.
    Cui, Yi
    Wang, Chongmin
    Xiao, Jie
    Liu, Jun
    Xu, Wu
    Zhang, Ji-Guang
    [J]. NATURE ENERGY, 2019, 4 (09) : 796 - 805
  • [5] Stable Seamless Interfaces and Rapid Ionic Conductivity of Ca-CeO2/LiTFSI/PEO Composite Electrolyte for High-Rate and High-Voltage All-Solid-State Battery
    Chen, Hao
    Adekoya, David
    Hencz, Luke
    Ma, Jun
    Chen, Su
    Yan, Cheng
    Zhao, Huijun
    Cui, Guanglei
    Zhang, Shanqing
    [J]. ADVANCED ENERGY MATERIALS, 2020, 10 (21)
  • [6] Recent Advances in Energy Chemistry between Solid-State Electrolyte and Safe Lithium-Metal Anodes
    Cheng, Xin-Bing
    Zhao, Chen-Zi
    Yao, Yu-Xing
    Liu, He
    Zhang, Qiang
    [J]. CHEM, 2019, 5 (01): : 74 - 96
  • [7] Synthesis and characterization of iota-carrageenan biopolymer electrolyte with lithium perchlorate and succinonitrile (plasticizer)
    Chitra, R.
    Sathya, P.
    Selvasekarapandian, S.
    Meyvel, S.
    [J]. POLYMER BULLETIN, 2020, 77 (03) : 1555 - 1579
  • [8] Enhancement of ion transport in polymer electrolytes by addition of nanoscale inorganic oxides
    Chung, SH
    Wang, Y
    Persi, L
    Croce, F
    Greenbaum, SG
    Scrosati, B
    Plichta, E
    [J]. JOURNAL OF POWER SOURCES, 2001, 97-8 : 644 - 648
  • [9] Improved Effect of Metal Coordination on Molecular Oxygen Activation for Selective Aerobic Photooxidation
    Cui, Jing-Wang
    Rao, Cai-Hui
    Jia, Meng-Ze
    Yao, Xin-Rong
    Zhang, Jie
    [J]. CHEMSUSCHEM, 2022, 15 (08)
  • [10] A Cobalt- and Manganese-Free High-Nickel Layered Oxide Cathode for Long-Life, Safer Lithium-Ion Batteries
    Cui, Zehao
    Xie, Qiang
    Manthiram, Arumugam
    [J]. ADVANCED ENERGY MATERIALS, 2021, 11 (41)