Leaky FinFET for Reservoir Computing with Temporal Signal Processing

被引:7
作者
Han, Joon-Kyu [1 ]
Yun, Seong-Yun [1 ]
Yu, Ji-Man [1 ]
Choi, Yang-Kyu [1 ]
机构
[1] Korea Adv Inst Sci & Technol KAIST, Sch Elect Engn, Daejeon 34141, South Korea
基金
新加坡国家研究基金会;
关键词
charge trap; leaky fin-shaped field-effect transistor(L-FinFET); reservoir computing; short-term memory; temporal signal processing;
D O I
10.1021/acsami.3c02630
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Reservoir computing can greatly reduce the hardware andtrainingcosts of recurrent neural networks with temporal data processing.To implement reservoir computing in a hardware form, physical reservoirstransforming sequential inputs into a high-dimensional feature spaceare necessary. In this work, a physical reservoir with a leaky fin-shapedfield-effect transistor (L-FinFET) is demonstrated by the positiveuse of a short-term memory property arising from the absence of anenergy barrier to suppress the tunneling current. Nevertheless, theL-FinFET reservoir does not lose its multiple memory states. The L-FinFETreservoir consumes very low power when encoding temporal inputs becausethe gate serves as an enabler of the write operation, even in theoff-state, due to its physical insulation from the channel. In addition,the small footprint area arising from the scalability of the FinFETdue to its multiple-gate structure is advantageous for reducing thechip size. After the experimental proof of 4-bit reservoir operationswith 16 states for temporal signal processing, handwritten digitsin the Modified National Institute of Standards and Technology datasetare classified by reservoir computing.
引用
收藏
页码:26960 / 26966
页数:7
相关论文
共 50 条
  • [41] Evolutionary aspects of reservoir computing
    Seoane, Luis F.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2019, 374 (1774)
  • [42] Morphological Reservoir Computing Hardware
    Galan-Prado, Fabio
    Font-Rossello, J.
    Rossello, Josep L.
    2019 IEEE 29TH INTERNATIONAL SYMPOSIUM ON POWER AND TIMING MODELING, OPTIMIZATION AND SIMULATION (PATMOS 2019), 2019, : 141 - 144
  • [43] Photonic Implementation of Reservoir Computing
    Nakajima M.
    Tsurugaya T.
    Tanaka K.
    Hashimoto T.
    NTT Technical Review, 2022, 20 (08): : 58 - 63
  • [44] Pruning and regularization in reservoir computing
    Dutoit, X.
    Schrauwen, B.
    Van Campenhout, J.
    Stroobandt, D.
    Van Brussel, H.
    Nuttin, M.
    NEUROCOMPUTING, 2009, 72 (7-9) : 1534 - 1546
  • [45] Stability and Topology in Reservoir Computing
    Manevitz, Larry
    Hazan, Hananel
    ADVANCES IN SOFT COMPUTING - MICAI 2010, PT II, 2010, 6438 : 245 - 256
  • [46] Tropical Reservoir Computing Hardware
    Galan-Prado, Fabio
    Font-Rossello, J.
    Rossello, Josep L.
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2020, 67 (11) : 2712 - 2716
  • [47] Minimal model for reservoir computing
    Sato, Yuzuru
    Kobayashi, Miki U.
    PHYSICA D-NONLINEAR PHENOMENA, 2024, 470
  • [48] Risk Bounds for Reservoir Computing
    Gonon, Lukas
    Grigoryeva, Lyudmila
    Ortega, Juan-Pablo
    JOURNAL OF MACHINE LEARNING RESEARCH, 2020, 21
  • [49] Physical reservoir computing: a tutorial
    Stepney, Susan
    NATURAL COMPUTING, 2024, 23 (04) : 665 - 685
  • [50] Neuromorphic Computing Based on Silicon Photonics and Reservoir Computing
    Katumba, Andrew
    Freiberger, Matthias
    Laporte, Floris
    Lugnan, Alessio
    Sackesyn, Stijn
    Ma, Chonghuai
    Dambre, Joni
    Bienstman, Peter
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2018, 24 (06)