Magnetic Interference Compensation Using the Adaptive LMS Algorithm

被引:3
|
作者
Ponikvar, Dusan [1 ,2 ]
Zupanic, Erik [2 ,3 ]
Jeglic, Peter [2 ]
机构
[1] Univ Ljubljana, Fac Math & Phys, Jadranska 19, SI-1000 Ljubljana, Slovenia
[2] Jozef Stefan Inst, Jamova 39, SI-1000 Ljubljana, Slovenia
[3] Univ Ljubljana, Fac Nat Sci & Engn, Askerceva cesta 12, SI-1000 Ljubljana, Slovenia
关键词
active magnetic interference compensation; adaptive least-mean-square algorithm; magnetic field sensor; mains magnetic interference;
D O I
10.3390/electronics12112360
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The aim of this study is to evaluate the method for the compensation of magnetic field interference from the mains, which consists primarily of components with a frequency of 50 (60) Hz and its multiples. The setup compensates for the interfering field using three Helmholtz coils, magnetic field sensors, a digital processing unit, and power amplifiers. The processing unit implements an adaptive least-mean-square (LMS) algorithm to calculate the currents through coils that are necessary for compensation. The prototype fully compensates for interfering with the magnetic field at 50, 150, 250, and 350 Hz down to the noise level of the sensor arrangement within 20 s and reduces higher harmonics. The overall reduction in the rms value of the interfering field is better than 28 dB, and a significantly better reduction is achieved in the frequency range from 0 Hz to 400 Hz.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Magnetic Field Measurement Using Surface Plasmon Resonance Sensing Technology Combined With Magnetic Fluid Photonic Crystal
    Ying, Yu
    Zhao, Yong
    Lv, Ri-Qing
    Hu, Hai-Feng
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2016, 65 (01) : 170 - 176
  • [22] Probing magnetic fields by using non-contacting magnetoelectric effect-based magnetic field sensors
    Gaiotto, F. J.
    Rozario, P. J.
    Nespolo, R. G.
    Montanher, D. Z.
    Pereira, J. R. D.
    Santos, I. A.
    FERROELECTRICS, 2018, 535 (01) : 47 - 52
  • [23] Highly Sensitive Reflective Fabry-Perot Magnetic Field Sensor Using Magnetic Fluid Based on Vernier Effect
    Zhao, Yong
    Wang, Xi-Xin
    Lv, Ri-Qing
    Li, Gui-Lin
    Zheng, Hong-Kun
    Zhou, Yi-Fan
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 70
  • [24] Position sensing system using integrated magnetic sensors and neural networks
    Takayama, M
    Maenaka, K
    Yamamoto, A
    TRANSDUCERS '01: EUROSENSORS XV, DIGEST OF TECHNICAL PAPERS, VOLS 1 AND 2, 2001, : 76 - 79
  • [25] Vibration and Magnetic Field Sensing Using a Long-Period Grating
    Nascimento, Ivo M.
    Chesini, Giancarlo
    Baptista, Jose Manuel
    Cordeiro, Cristiano M. B.
    Jorge, Pedro A. S.
    IEEE SENSORS JOURNAL, 2017, 17 (20) : 6615 - 6621
  • [26] Analysis of a Magnetic Field Sensor Based on a Sagnac Interferometer Using a Magnetic Fluid-Filled Birefringent Photonic Crystal Fiber
    Ma, Mingjian
    Chen, Hailiang
    Li, Shuguang
    Jing, Xili
    Zhang, Wenxun
    Wang, Mingyue
    IEEE PHOTONICS JOURNAL, 2019, 11 (04):
  • [27] VEHICLE DETECTOR BASED ON THE MAGNETIC FIELD SENSOR AND THE FIXED-THRESHOLD ALGORITHM IMPLEMENTED VIA FINITE STATE MACHINE
    Stojanovic, Milan
    Vracar, Ljubomir
    FACTA UNIVERSITATIS-SERIES ELECTRONICS AND ENERGETICS, 2025, 38 (01) : 19 - 38
  • [28] MAGNETIC-FIELD MEASUREMENTS USING MAGNETOOPTIC KERR-EFFECT SENSORS
    OLIVER, SA
    DIMARZIO, CA
    LINDBERG, SC
    KALE, AB
    OPTICAL ENGINEERING, 1994, 33 (11) : 3718 - 3722
  • [29] Magnetic Optical FBG Sensors Using Optical Frequency-Domain Reflectometry
    Kaplan, Norbert
    Jasenek, Jozef
    Cervenova, Jozefa
    Usakova, Mariana
    IEEE TRANSACTIONS ON MAGNETICS, 2019, 55 (01)
  • [30] Magnetic field sensors using magnetoelectric effect in ferrite-piezoelectric multilayers
    Fetisov, Y
    Bush, A
    Kamentsev, K
    Ostashchenko, A
    Srinivasan, G
    PROCEEDINGS OF THE IEEE SENSORS 2004, VOLS 1-3, 2004, : 1106 - 1108