D'Alembert Formula for Diffusion-Wave Equation

被引:2
|
作者
Pskhu, A. V. [1 ]
机构
[1] Russian Acad Sci, Inst Appl Math & Automat, Kabardino Balkarian Sci Ctr, Nalchik 360000, Kabardino Balka, Russia
关键词
diffusion-wave equation; Liouville fractional derivative; d'Alembert formula; BOUNDARY-VALUE PROBLEM; FRACTIONAL DIFFUSION; CAUCHY-PROBLEM;
D O I
10.1134/S1995080223020312
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct a representation of solutions for diffusion-wave equations as a sum of two solutions of the first order PDEs. Fractional differentiation is given by the Liouville fractional derivative. The representation is an analogue of the d'Alembert formula known for the wave equation. In the case of an infinite rectangular domain (half-strip), we give relations that connect the traces of the solutions involved in the representation on the boundary of the domain.
引用
收藏
页码:644 / 652
页数:9
相关论文
共 50 条
  • [41] A boundary element method formulation based on the Caputo derivative for the solution of the diffusion-wave equation
    Carrer, J. A. M.
    Solheid, B. S.
    Trevelyan, J.
    Seaid, M.
    ENGINEERING WITH COMPUTERS, 2022, 38 (SUPPL 4) : 3563 - 3580
  • [42] A boundary element method formulation based on the Caputo derivative for the solution of the diffusion-wave equation
    J. A. M. Carrer
    B. S. Solheid
    J. Trevelyan
    M. Seaid
    Engineering with Computers, 2022, 38 : 3563 - 3580
  • [43] Approximate symmetry group classification for a nonlinear fractional filtration equation of diffusion-wave type
    Stanislav Yu. Lukashchuk
    Regina D. Saburova
    Nonlinear Dynamics, 2018, 93 : 295 - 305
  • [44] Non-axisymmetric solutions to time-fractional diffusion-wave equation in an infinite cylinder
    Yuriy Povstenko
    Fractional Calculus and Applied Analysis, 2011, 14 : 418 - 435
  • [45] Solvability and Volterra property of nonlocal problems for mixed fractional-order diffusion-wave equation
    Nauryzbay Adil
    Abdumauvlen S. Berdyshev
    B. E. Eshmatov
    Zharasbek D. Baishemirov
    Boundary Value Problems, 2023
  • [46] Time-Fractional Diffusion-Wave Equation with Mass Absorption in a Sphere under Harmonic Impact
    Datsko, Bohdan
    Podlubny, Igor
    Povstenko, Yuriy
    MATHEMATICS, 2019, 7 (05)
  • [47] Fourth-order numerical method for the space time tempered fractional diffusion-wave equation
    Dehghan, Mehdi
    Abbaszadeh, Mostafa
    Deng, Weihua
    APPLIED MATHEMATICS LETTERS, 2017, 73 : 120 - 127
  • [48] Existence conditions for a classical solution of the cauchy problem for the diffusion-wave equation with a partial Caputo derivative
    A. A. Voroshilov
    A. A. Kilbas
    Doklady Mathematics, 2007, 75 : 407 - 410
  • [49] ON THE FRACTIONAL-ORDER DIFFUSION-WAVE PROCESS
    Herzallah, Mohamed A. E.
    El-Sayed, Ahmed M. A.
    Baleanu, Dumtru
    ROMANIAN JOURNAL OF PHYSICS, 2010, 55 (3-4): : 274 - 284
  • [50] A D'Alembert Formula for Flat Surfaces in the 3-Sphere
    Aledo, Juan A.
    Galvez, Jose A.
    Mira, Pablo
    JOURNAL OF GEOMETRIC ANALYSIS, 2009, 19 (02) : 211 - 232