D'Alembert Formula for Diffusion-Wave Equation

被引:2
|
作者
Pskhu, A. V. [1 ]
机构
[1] Russian Acad Sci, Inst Appl Math & Automat, Kabardino Balkarian Sci Ctr, Nalchik 360000, Kabardino Balka, Russia
关键词
diffusion-wave equation; Liouville fractional derivative; d'Alembert formula; BOUNDARY-VALUE PROBLEM; FRACTIONAL DIFFUSION; CAUCHY-PROBLEM;
D O I
10.1134/S1995080223020312
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct a representation of solutions for diffusion-wave equations as a sum of two solutions of the first order PDEs. Fractional differentiation is given by the Liouville fractional derivative. The representation is an analogue of the d'Alembert formula known for the wave equation. In the case of an infinite rectangular domain (half-strip), we give relations that connect the traces of the solutions involved in the representation on the boundary of the domain.
引用
收藏
页码:644 / 652
页数:9
相关论文
共 50 条
  • [21] Radial basis functions and FDM for solving fractional diffusion-wave equation
    Avazzadeh, Z.
    Hosseini, V. R.
    Chen, W.
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2014, 38 (A3): : 205 - 212
  • [22] Propagation speed of the maximum of the fundamental solution to the fractional diffusion-wave equation
    Luchko, Yuri
    Mainardi, Francesco
    Povstenko, Yuriy
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2013, 66 (05) : 774 - 784
  • [23] Solutions to Time-Fractional Diffusion-Wave Equation in Cylindrical Coordinates
    Y.Z. Povstenko
    Advances in Difference Equations, 2011
  • [24] NON-AXISYMMETRIC SOLUTIONS TO TIME-FRACTIONAL DIFFUSION-WAVE EQUATION IN AN INFINITE CYLINDER
    Povstenko, Yuriy
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2011, 14 (03) : 418 - 435
  • [25] Some properties of the fundamental solution to the signalling problem for the fractional diffusion-wave equation
    Luchko, Yuri
    Mainardi, Francesco
    CENTRAL EUROPEAN JOURNAL OF PHYSICS, 2013, 11 (06): : 666 - 675
  • [26] Bitsadze-Samarskii type problem for the integro-differential diffusion-wave equation on the Heisenberg group
    Ruzhansky, M.
    Tokmagambetov, N.
    Torebek, B. T.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2020, 31 (01) : 1 - 9
  • [27] A novel finite difference discrete scheme for the time fractional diffusion-wave equation
    Liu, Zhengguang
    Cheng, Aijie
    Li, Xiaoli
    APPLIED NUMERICAL MATHEMATICS, 2018, 134 : 17 - 30
  • [28] The first boundary-value problem for a fractional diffusion-wave equation in a non-cylindrical domain
    Pskhu, Arsen V.
    IZVESTIYA MATHEMATICS, 2017, 81 (06) : 1212 - 1233
  • [29] Spectral properties of local and nonlocal problems for the diffusion-wave equation of fractional order
    Adil, N.
    Berdyshev, A. S.
    BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2023, 110 (02): : 4 - 20
  • [30] A fractional diffusion-wave equation with non-local regularization for image denoising
    Zhang, Wei
    Li, Jiaojie
    Yang, Yupu
    SIGNAL PROCESSING, 2014, 103 : 6 - 15