D'Alembert Formula for Diffusion-Wave Equation

被引:2
|
作者
Pskhu, A. V. [1 ]
机构
[1] Russian Acad Sci, Inst Appl Math & Automat, Kabardino Balkarian Sci Ctr, Nalchik 360000, Kabardino Balka, Russia
关键词
diffusion-wave equation; Liouville fractional derivative; d'Alembert formula; BOUNDARY-VALUE PROBLEM; FRACTIONAL DIFFUSION; CAUCHY-PROBLEM;
D O I
10.1134/S1995080223020312
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct a representation of solutions for diffusion-wave equations as a sum of two solutions of the first order PDEs. Fractional differentiation is given by the Liouville fractional derivative. The representation is an analogue of the d'Alembert formula known for the wave equation. In the case of an infinite rectangular domain (half-strip), we give relations that connect the traces of the solutions involved in the representation on the boundary of the domain.
引用
收藏
页码:644 / 652
页数:9
相关论文
共 50 条
  • [1] D’Alembert Formula for Diffusion-Wave Equation
    A. V. Pskhu
    Lobachevskii Journal of Mathematics, 2023, 44 : 644 - 652
  • [2] Generalized diffusion-wave equation with memory kernel
    Sandev, Trifce
    Tomovski, Zivorad
    Dubbeldam, Johan L. A.
    Chechkin, Aleksei
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2019, 52 (01)
  • [3] The fundamental solution of a diffusion-wave equation of fractional order
    Pskhu, A. V.
    IZVESTIYA MATHEMATICS, 2009, 73 (02) : 351 - 392
  • [4] Fractional Diffusion-Wave Equation with Application in Electrodynamics
    Pskhu, Arsen
    Rekhviashvili, Sergo
    MATHEMATICS, 2020, 8 (11) : 1 - 13
  • [5] Solutions to the fractional diffusion-wave equation in a wedge
    Povstenko, Yuriy
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2014, 17 (01) : 122 - 135
  • [6] A Study on Fractional Diffusion-Wave Equation with a Reaction
    Abuomar, Mohammed M. A.
    Syam, Muhammed, I
    Azmi, Amirah
    SYMMETRY-BASEL, 2022, 14 (08):
  • [7] Solutions to the fractional diffusion-wave equation in a wedge
    Yuriy Povstenko
    Fractional Calculus and Applied Analysis, 2014, 17 : 122 - 135
  • [8] ERROR ESTIMATE OF THE NONUNIFORM L1 TYPE FORMULA FOR THE TIME FRACTIONAL DIFFUSION-WAVE EQUATION
    Sun, Hong
    Chen, Yanping
    Zhao, Xuan
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2023, 21 (06) : 1707 - 1725
  • [9] OPTIMAL CONTROL FOR SYSTEMS MODELED BY THE DIFFUSION-WAVE EQUATION
    Postnov, S. S.
    SIBERIAN MATHEMATICAL JOURNAL, 2023, 64 (03) : 757 - 766
  • [10] Optimal Control for Systems Modeled by the Diffusion-Wave Equation
    S. S. Postnov
    Siberian Mathematical Journal, 2023, 64 : 757 - 766