Efficiency of Orthogonal Matching Pursuit for Group Sparse Recovery

被引:2
|
作者
Shao, Chunfang [1 ]
Wei, Xiujie [2 ]
Ye, Peixin [3 ,4 ]
Xing, Shuo [3 ,4 ]
机构
[1] North China Univ Sci & Technol, Coll Sci, Tangshan 063210, Peoples R China
[2] Tianjin Chengjian Univ, Sch Sci, Tianjin 300384, Peoples R China
[3] Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
[4] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
基金
中国国家自然科学基金;
关键词
compressed sensing; group orthogonal matching pursuit; group sparse; group restricted isometry property; instance optimality; robustness; scalability; SIGNALS; RECONSTRUCTION; REPRESENTATION; PERFORMANCE; ALGORITHMS; BOUNDS;
D O I
10.3390/axioms12040389
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose the Group Orthogonal Matching Pursuit (GOMP) algorithm to recover group sparse signals from noisy measurements. Under the group restricted isometry property (GRIP), we prove the instance optimality of the GOMP algorithm for any decomposable approximation norm. Meanwhile, we show the robustness of the GOMP under the measurement error. Compared with the P-norm minimization approach, the GOMP is easier to implement, and the assumption of ?-decomposability is not required. The simulation results show that the GOMP is very efficient for group sparse signal recovery and significantly outperforms Basis Pursuit in both scalability and solution quality.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] Sparse Recovery With Orthogonal Matching Pursuit Under RIP
    Zhang, Tong
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (09) : 6215 - 6221
  • [2] On the Sparse Signal Recovery with Parallel Orthogonal Matching Pursuit
    Park, Shin-Woong
    Park, Jeonghong
    Jung, Bang Chul
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2013, E96A (12) : 2728 - 2730
  • [3] Orthogonal Matching Pursuit for Sparse Signal Recovery With Noise
    Cai, T. Tony
    Wang, Lie
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (07) : 4680 - 4688
  • [4] On the Recovery Limit of Sparse Signals Using Orthogonal Matching Pursuit
    Wang, Jian
    Shim, Byonghyo
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (09) : 4973 - 4976
  • [5] Sparse signal recovery using orthogonal matching pursuit (OMP)
    Lobato Polo, Adriana Patricia
    Ruiz Coral, Rafael Humberto
    Quiroga Sepulveda, Julian Armando
    Recio Velez, Adolfo Leon
    INGENIERIA E INVESTIGACION, 2009, 29 (02): : 112 - 118
  • [6] THE EXACT RECOVERY OF SPARSE SIGNALS VIA ORTHOGONAL MATCHING PURSUIT
    Liao, Anping
    Xie, Jiaxin
    Yang, Xiaobo
    Wang, Peng
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2016, 34 (01) : 70 - 86
  • [7] Sparse Signal Recovery via Optimized Orthogonal Matching Pursuit
    Li, Zhilin
    Chen, Houjin
    Yao, Chang
    Li, Jupeng
    Yang, Na
    PROCEEDINGS OF THE 2009 2ND INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, VOLS 1-9, 2009, : 3758 - 3761
  • [8] Fusion of Orthogonal Matching Pursuit and Least Squares Pursuit for Robust Sparse Recovery
    Cleju, Nicolae
    Ciocoiu, Iulian B.
    2019 INTERNATIONAL SYMPOSIUM ON SIGNALS, CIRCUITS AND SYSTEMS (ISSCS 2019), 2019,
  • [9] Block-Refined Orthogonal Matching Pursuit for Sparse Signal Recovery
    Ji, Ying
    Wu, Xiaofu
    Yan, Jun
    Zhu, Wei-ping
    Yang, Zhen
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2014, E97A (08): : 1787 - 1790
  • [10] A Fast Multiple Orthogonal Matching Pursuit Algorithm for Jointly Sparse Recovery
    Xiang Long
    Xiang Hu
    Li Shaodong
    Ma Xiaoyan
    2016 CIE INTERNATIONAL CONFERENCE ON RADAR (RADAR), 2016,