On sampling Kaczmarz-Motzkin methods for solving large-scale nonlinear systems

被引:4
作者
Zhang, Feiyu [1 ]
Bao, Wendi [1 ]
Li, Weiguo [1 ]
Wang, Qin [1 ]
机构
[1] China Univ Petr, Coll Sci, Qingdao 266580, Peoples R China
基金
中国国家自然科学基金;
关键词
Large-scale nonlinear equations; Finite convex constraints; Sampling Kaczmarz-Motzkin method; Projection method; Randomized accelerated projection method; CONVERGENCE;
D O I
10.1007/s40314-023-02265-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, for solving large-scale nonlinear equations, we propose a nonlinear sampling Kaczmarz-Motzkin (NSKM) method. Based on the local tangential cone condition and the Jensen's inequality, we prove convergence of our method with two different assumptions. Then, for solving nonlinear equations with the convex constraints, we present two variants of the NSKM method: the projected sampling Kaczmarz-Motzkin (PSKM) method and the accelerated projected sampling Kaczmarz-Motzkin (APSKM) method. With the use of the nonexpansive property of the projection and the convergence of the NSKM method, the convergence analysis is obtained. Numerical results show that the NSKM method with the sample of the suitable size outperforms the nonlinear randomized Kaczmarz method in terms of calculation times. The APSKM and PSKM methods are practical and promising for the constrained nonlinear problem.
引用
收藏
页数:24
相关论文
共 14 条
  • [1] Projection algorithms for solving convex feasibility problems
    Bauschke, HH
    Borwein, JM
    [J]. SIAM REVIEW, 1996, 38 (03) : 367 - 426
  • [2] Brinkhuis J., 2020, Convex Analysis for Optimization-A Unified Approach, V1, DOI [10.1007/978-3-030-41804-5, DOI 10.1007/978-3-030-41804-5]
  • [3] The University of Florida Sparse Matrix Collection
    Davis, Timothy A.
    Hu, Yifan
    [J]. ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2011, 38 (01):
  • [4] A SAMPLING KACZMARZ-MOTZKIN ALGORITHM FOR LINEAR FEASIBILITY
    De Loera, Jesus A.
    Haddock, Jamie
    Needell, Deanna
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2017, 39 (05) : S66 - S87
  • [5] QUASI-NEWTON METHODS, MOTIVATION AND THEORY
    DENNIS, JE
    MORE, JJ
    [J]. SIAM REVIEW, 1977, 19 (01) : 46 - 89
  • [6] Haltmeier M, 2007, INVERSE PROBL IMAG, V1, P289
  • [7] ON THE CONVERGENCE OF STOCHASTIC GRADIENT DESCENT FOR NONLINEAR ILL-POSED PROBLEMS
    Jin, Bangti
    Zhou, Zehui
    Zou, Jun
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2020, 30 (02) : 1421 - 1450
  • [8] Kelley C.T., 1987, Iterative Methods for Linear and Nonlinear Equations
  • [9] A globally and superlinearly convergent Gauss-Newton-based BFGS method for symmetric nonlinear equations
    Li, DH
    Fukushima, M
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1999, 37 (01) : 152 - 172
  • [10] Luksan L, 2018, 1259 I COMPUTER SCI, DOI [10.13140/RG.2.2.16112.10248, DOI 10.13140/RG.2.2.16112.10248]