IRREDUNDANT FAMILIES OF MAXIMAL SUBGROUPS OF FINITE SOLVABLE GROUPS

被引:0
作者
Stocka, Agnieszka [1 ]
机构
[1] Univ Bialystok, Fac Math, Ciolkowskiego 1M, PL-15245 Bialystok, Poland
关键词
Intersection of maximal subgroups and maximal dimension and finite solvable groups;
D O I
10.22108/IJGT.2022.130778.1751
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M be a family of maximal subgroups of a group G. We say that M is irredundant if its intersection is not equal to the intersection of any proper subfamily of M. The maximal dimension of G is the maximal size of an irredundant family of maximal subgroups of G. In this paper we study a class of solvable groups, called M-groups, in which the maximal dimension has properties analogous to that of the dimension of a vector space such as the span property, the extension property and the basis exchange property.
引用
收藏
页码:163 / 176
页数:14
相关论文
共 17 条
[1]  
[Anonymous], 1992, DEGRUYTER EXPOSITION
[2]  
Archer K, 2019, Arxiv, DOI arXiv:1907.02898
[3]   FINITE GROUPS WITH L-FREE LATTICES OF SUBGROUPS [J].
Baginski, Czeslaw ;
Stocka, Agnieszka .
ILLINOIS JOURNAL OF MATHEMATICS, 2008, 52 (03) :887-900
[4]  
Burness T. C., 2020, ARXIV
[5]   On the minimal dimension of a finite simple group [J].
Burness, Timothy C. ;
Garonzi, Martino ;
Lucchini, Andrea .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2020, 171
[6]   Maximal subgroups of finite soluble groups in general position [J].
Detomi, Eloisa ;
Lucchini, Andrea .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2016, 195 (04) :1177-1183
[7]  
Fernando R, 2015, Arxiv, DOI arXiv:1502.00360
[8]   Maximal irredundant families of minimal size in the alternating group [J].
Garonzi, Martino ;
Lucchini, Andrea .
ARCHIV DER MATHEMATIK, 2019, 113 (02) :119-126
[9]   ON GOLDIE AND DUAL GOLDIE DIMENSIONS [J].
GRZESZCZUK, P ;
PUCZYLOWSKI, ER .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1984, 31 (1-3) :47-54
[10]  
Krempa J., 1995, CONTRIBUTIONS GEN AL, V9, P219