State of Charge Estimation of the Lithium-Ion Battery Pack Based on Two Sigma-Point Kalman Filters

被引:3
作者
Nguyen Vinh Thuy [1 ]
Nguyen Van Chi [1 ]
Ngo Minh Duc [1 ]
Nguyen Hong Quang [1 ]
机构
[1] Thai Nguyen Univ Technol, Thai Nguyen, Vietnam
来源
NEXT GENERATION OF INTERNET OF THINGS | 2023年 / 445卷
关键词
Lithium-ion cell; Battery pack; Sigma-point Kalman filter; Current bias; SoC estimation; Second-order RC equivalent circuit model;
D O I
10.1007/978-981-19-1412-6_37
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Nowadays, the lithium-ion battery pack (LiB) is used as the main power supply for electric vehicles (EV). The remaining energy of LiB is the very important parameter determined continuously by estimating LiB's state of charge (SoC). SoC estimation is one of the main functions of the battery management systems (BMS). This article presents the use of two sigma-point Kalman filters (SPKF) to estimate accurately the SoC of the LiB based on the second-order model of the cell. The LiB's average SoC and the zero bias of the current measurement through the LiB are estimated by the first SPKF, while the second filter is applied to calculate the SoC differences between LiB's average SoC and the modules' SoC in the LiB. To improve the SoC accuracy of the LiB modules, a second-order RC equivalent circuit model (SECM) of the cell is used, and the influences of temperature, voltage hysteric, measurement errors, and zero bias of current measurement on the SoC estimation of the LiB are taken into account. To verify the method, the experimental test is conducted in the LiB with cells connected in parallels and series. The simulation and experimental results are analyzed to prove that the SoC estimation of the modules in the LiB is higher accuracy, and the LiB's average SoC errors are less than 1.5% at different temperatures ranging from - 5 to 45 degrees C. The calculation time consuming is shorter, and the calculation complex is reduced significantly.
引用
收藏
页码:427 / 442
页数:16
相关论文
共 50 条
  • [1] State of Charge Estimation of Lithium Ion Batteries Using an Extended Single Particle Model and Sigma-Point Kalman Filter
    Ngoc Tham Tran
    Vilathgamuwa, Mahinda
    Li, Yang
    Farrell, Troy
    Choi, San Shing
    Teague, Joseph
    2017 IEEE SOUTHERN POWER ELECTRONICS CONFERENCE (SPEC), 2017, : 405 - 410
  • [2] Improved parameter identification and state-of-charge estimation for lithium-ion battery with fixed memory recursive least squares and sigma-point Kalman filter
    Sun, Changcheng
    Lin, Huipin
    Cai, Hui
    Gao, Mingyu
    Zhu, Chunxiang
    He, Zhiwei
    ELECTROCHIMICA ACTA, 2021, 387
  • [3] Soc Estimation of the Lithium-Ion Battery Pack using a Sigma Point Kalman Filter Based on a Cell's Second Order Dynamic Model
    Chi Nguyen Van
    Thuy Nguyen Vinh
    APPLIED SCIENCES-BASEL, 2020, 10 (05):
  • [4] A Novel State-of-Charge Estimation Method for Lithium-ion Batteries Using Convolutional Transformer Network and Sigma-point Kalman Filter
    Duan, Yuxin
    Zou, Runmin
    2022 4TH INTERNATIONAL CONFERENCE ON SMART POWER & INTERNET ENERGY SYSTEMS, SPIES, 2022, : 1850 - 1855
  • [5] Novel temperature-effective modeling and state of charge estimation based on sigma-point Kalman filter for lithium titanate oxide battery
    Muratoglu, Yusuf
    Alkaya, Alkan
    BULLETIN OF THE POLISH ACADEMY OF SCIENCES-TECHNICAL SCIENCES, 2024, 72 (05)
  • [6] State of Charge Estimation for Lithium-Ion Battery Pack With Selected Representative Cells
    Liu, Xingtao
    Xia, Wenlong
    Li, Siyuan
    Lin, Mingqiang
    Wu, Ji
    IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2024, 10 (02): : 4107 - 4118
  • [7] State of charge estimation of Lithium-ion batteries based on the probabilistic fusion of two kinds of cubature Kalman filters
    Ling, Long
    Sun, Daoming
    Yu, Xiaoli
    Huang, Rui
    JOURNAL OF ENERGY STORAGE, 2021, 43
  • [8] Fault Diagnosis for Lithium-Ion Battery Pack Based on Relative Entropy and State of Charge Estimation
    Fan, Tian-E
    Chen, Fan
    Lei, Hao-Ran
    Tang, Xin
    Feng, Fei
    BATTERIES-BASEL, 2024, 10 (07):
  • [9] A Novel State-of-Charge Estimation Method for Lithium-Ion Battery Pack of Electric Vehicles
    Chen, Zheng
    Xia, Bing
    Mi, Chunting Chris
    2015 IEEE TRANSPORTATION ELECTRIFICATION CONFERENCE AND EXPO (ITEC), 2015,
  • [10] State-of-charge estimation of lithium-ion battery pack by using an adaptive extended Kalman filter for electric vehicles
    Zhang, Zhiyong
    Jiang, Li
    Zhang, Liuzhu
    Huang, Caixia
    JOURNAL OF ENERGY STORAGE, 2021, 37